Annual Meeting

Translating the glycosylation code

JBC Herbert Tabor Early Career Investigator Award winner Anabel Gonzalez–Gil will present her research at Discover BMB
Laura Elyse McCormick
March 15, 2023

Anabel Gonzalez–Gil always viewed science as bland memorization until she began a high school chemistry class.

“I had a professor that was very creative and we had a lot of experiments that were hands on,” she said. “That really caught my attention.”

Anabel Gonzalez-Gil
Anabel Gonzalez–Gil

Channeling that passion, Gonzalez–Gil studied chemistry at Florida International University. As an undergraduate, she spent a summer at the University of Colorado working with calcium-sensing probes.

“That was the first time I did molecular biology and that kind of shifted my career,” she said, explaining she was captivated by being able to modulate protein expression and function.

Following a postbaccalaureate program at the National Institute on Aging, she began graduate school at Johns Hopkins University and was introduced to glycosylation, a type of post-translational modification where combinations of sugars (glycans) are added to proteins or lipids.

Most cell-surface and secreted proteins in the human body are glycosylated. The structure and density of glycans on these proteins regulate receptor binding and downstream cell signaling. Gonzalez–Gil’s doctoral work focused on the immune system, studying the receptor Siglec-8 and its glycosylated ligands in the airway.

Now as a postdoctoral fellow at Johns Hopkins, Gonzalez–Gil investigates the role of glycosylation in the brain. In the future, she plans to open her own lab.

As Gonzalez–Gil reflected on her path, she emphasized the importance of teamwork in pushing science forward. “The best of my career has not been me doing things on my own,” she said. “I would like to highlight how important and how satisfying it is to be able to collaborate.”

Linking a ligand to neurodegeneration

Glycosylation is not static. The sugar groups added to a protein or lipid can be changed quickly to elicit a different cellular reaction. The quintessential example of this rapid adaptation can be seen in the immune system. While the body must engage the inflammatory response quickly to fight a pathogen, it also needs to shut down this pathway after the threat has passed.

 

Anabel Gonzalez–Gil’s research focuses on Siglecs, a family of receptors primarily found on immune cells. Many human Siglecs bind glycosylated ligands, launching a signaling cascade to downregulate the immune system. In recent years, Siglecs were linked to cancer cells’ evasion of the immune system and Alzheimer’s disease.

“I’m truly fascinated by the ability of glycans to modulate cellular responses in such a short time,” Gonzalez–Gil said. “If you want a different target and outcome, you just have to modify a protein’s glycans.”

She compares this process to work at a construction site. “You don't have to break down the entire house and then take the blocks and build it back up to how you want it,” she said. “You just remodel what needs to be fixed so that it can work better.”

Gonzalez–Gil and colleagues in Ronald Schnaar’s lab at the Johns Hopkins University School of Medicine discovered a glycosylated version of the protein RPTPζ that specifically binds two Siglecs on microglia, the immune cells of the brain. Their research showed that RPTPζ expression is elevated in the brains of patients diagnosed with Alzheimer’s.

The team now is working to understand the link between RPTPζ and the inflammation associated with neurological diseases, Gonzalez–Gil said.

“We are really focusing on trying to understand how the production of this ligand fine-tunes the immune system.”

“Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer’s disease” was published in the Journal of Biological Chemistry in June 2022. Gonzalez–Gil and other winners of the JBC Tabor Award will give talks during a symposium on Sunday, March 26, at Discover BMB in Seattle.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laura Elyse McCormick

Laura McCormick is a graduate student in the Department of Cell Biology and Physiology at the University of North Carolina at Chapel Hill.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Meet the 2024 ASBMB Advocacy Training Program delegates
Training

Meet the 2024 ASBMB Advocacy Training Program delegates

June 13, 2024

The program's sixth cohort will learn how to advocate for science funding and support this summer and will visit Capitol Hill in 2025.

Honors for DeBose–Boyd, Michel and Nelson
Member News

Honors for DeBose–Boyd, Michel and Nelson

June 10, 2024

Awards, promotions, milestones and more. Find out what's going on in the lives of ASBMB members.

In memoriam: Bacon Ke
In Memoriam

In memoriam: Bacon Ke

June 10, 2024

He was a physical chemist and pioneer in the field of photochemistry of photosynthesis and had been an ASBMB member since 1968.

MOSAIC scholar navigates a nontraditional path
Profile

MOSAIC scholar navigates a nontraditional path

June 5, 2024

After two Army deployments to Iraq, Renato Navarro aspired to be a physician before a chance encounter on a university campus led him to study biomaterials.

2024 PROLAB awardees announced
Award

2024 PROLAB awardees announced

June 3, 2024

10 early-career scientists receive grants to advance their research by working in North American labs.

In memoriam: Henry Michael Miziorko
In Memoriam

In memoriam: Henry Michael Miziorko

June 3, 2024

His research at the University of Missouri–Kansas City focused on the biochemical and structural basis of enzyme function, particularly in the mevalonate pathway.