Annual Meeting

Translating the glycosylation code

JBC Herbert Tabor Early Career Investigator Award winner Anabel Gonzalez–Gil will present her research at Discover BMB
Laura Elyse McCormick
March 15, 2023

Anabel Gonzalez–Gil always viewed science as bland memorization until she began a high school chemistry class.

“I had a professor that was very creative and we had a lot of experiments that were hands on,” she said. “That really caught my attention.”

Anabel Gonzalez-Gil
Anabel Gonzalez–Gil

Channeling that passion, Gonzalez–Gil studied chemistry at Florida International University. As an undergraduate, she spent a summer at the University of Colorado working with calcium-sensing probes.

“That was the first time I did molecular biology and that kind of shifted my career,” she said, explaining she was captivated by being able to modulate protein expression and function.

Following a postbaccalaureate program at the National Institute on Aging, she began graduate school at Johns Hopkins University and was introduced to glycosylation, a type of post-translational modification where combinations of sugars (glycans) are added to proteins or lipids.

Most cell-surface and secreted proteins in the human body are glycosylated. The structure and density of glycans on these proteins regulate receptor binding and downstream cell signaling. Gonzalez–Gil’s doctoral work focused on the immune system, studying the receptor Siglec-8 and its glycosylated ligands in the airway.

Now as a postdoctoral fellow at Johns Hopkins, Gonzalez–Gil investigates the role of glycosylation in the brain. In the future, she plans to open her own lab.

As Gonzalez–Gil reflected on her path, she emphasized the importance of teamwork in pushing science forward. “The best of my career has not been me doing things on my own,” she said. “I would like to highlight how important and how satisfying it is to be able to collaborate.”

Linking a ligand to neurodegeneration

Glycosylation is not static. The sugar groups added to a protein or lipid can be changed quickly to elicit a different cellular reaction. The quintessential example of this rapid adaptation can be seen in the immune system. While the body must engage the inflammatory response quickly to fight a pathogen, it also needs to shut down this pathway after the threat has passed.

 

Anabel Gonzalez–Gil’s research focuses on Siglecs, a family of receptors primarily found on immune cells. Many human Siglecs bind glycosylated ligands, launching a signaling cascade to downregulate the immune system. In recent years, Siglecs were linked to cancer cells’ evasion of the immune system and Alzheimer’s disease.

“I’m truly fascinated by the ability of glycans to modulate cellular responses in such a short time,” Gonzalez–Gil said. “If you want a different target and outcome, you just have to modify a protein’s glycans.”

She compares this process to work at a construction site. “You don't have to break down the entire house and then take the blocks and build it back up to how you want it,” she said. “You just remodel what needs to be fixed so that it can work better.”

Gonzalez–Gil and colleagues in Ronald Schnaar’s lab at the Johns Hopkins University School of Medicine discovered a glycosylated version of the protein RPTPζ that specifically binds two Siglecs on microglia, the immune cells of the brain. Their research showed that RPTPζ expression is elevated in the brains of patients diagnosed with Alzheimer’s.

The team now is working to understand the link between RPTPζ and the inflammation associated with neurological diseases, Gonzalez–Gil said.

“We are really focusing on trying to understand how the production of this ligand fine-tunes the immune system.”

“Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer’s disease” was published in the Journal of Biological Chemistry in June 2022. Gonzalez–Gil and other winners of the JBC Tabor Award will give talks during a symposium on Sunday, March 26, at Discover BMB in Seattle.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laura Elyse McCormick

Laura McCormick is a graduate student in the Department of Cell Biology and Physiology at the University of North Carolina at Chapel Hill.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Awards for Maquat and Gohil; Sobrado named biochem chair
Member News

Awards for Maquat and Gohil; Sobrado named biochem chair

Dec. 9, 2024

Vishal Gohil is honored for work with copper. Lynn Maquat receives two awards for RNA research. Pablo Sobrado is named endowed chair of biochemistry.

What seems dead may not be dead
Award

What seems dead may not be dead

Dec. 4, 2024

Vincent Tagliabracci will receive the Earl and Thressa Stadtman Distinguished Scientist Award at the ASBMB Annual Meeting, April 12–15 in Chicago.

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Molecular Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

ASBMB committees welcome new members
Announcement

ASBMB committees welcome new members

Nov. 29, 2024

Committee members serve terms of two to five years, and a number of new members have joined. We also thank those whose terms have ended.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.