Journal News

Stabilizing the enzyme in fish odor syndrome

Mussa Quareshy
By Mussa Quareshy
Dec. 6, 2020

Fish odor syndrome, or trimethylaminuria, is a disease in which the liver cannot break down the smelly chemical trimethylamine, or TMA, that is produced by enzymes from bacteria residing in the gut. There is no cure for fish odor syndrome, which gives people an unpleasant fishy smell that can affect breath, sweat, urine and vaginal fluids.

FishOdor-226x600.jpg
University of Warwick
Top: protein crystals of CntA enzyme; middle: a cartoon depiction of CntA enzyme in its functional trimeric state; bottom: detailed view of carnitine bound in the active site of CntA prior to cleavage.

Our research team at the University of Warwick is working to prevent the syndrome through studying the enzyme in the gut that produces trimethylamine.

Fish odor syndrome starts when an enzyme pathway in the gut called CntA/B produces TMA. The enzyme breaks down a TMA precursor called L-carnitine, which is found in dairy, fish and meat. If an individual lacks a functional liver enzyme called FMO3, they cannot degrade TMA into a non-smelly chemical form, trimethylamine oxide, or TMAO. The TMA then builds up in the body and ends up in bodily fluids.

In a recent paper, published in the Journal of Biological Chemistry, our team in Yin Chen's lab at Warwick's School of Life Sciences focused on the CntA protein of the CntA/B enzyme, to stabilize and study it.

CntA/B is a notoriously hard enzyme to study, but once it was stabilized, we were able to gain insight into how CntA perceives its L-carnitine substrate with a 3D crystal structure model, and by studying the complete electron transfer pathway, we could see how the protein is able to turn over TMA.

Now that we understand how exactly TMA is produced in the gut and that the enzyme can be inhibited, there are grounds for further research into future discovery of drugs targeting the TMA-producing enzyme in the human gut.

We have identified novel, drug-like inhibitors that can inhibit CntA function and thus TMA formation with the potential to attenuate TMA formation in the gut microbiome. This is vital not only for people who have fish odor syndrome, but also because TMA can accelerate atherosclerosis and heart disease.
 

This article was adapted from a University of Warwick press release. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Mussa Quareshy
Mussa Quareshy

Mussa Quareshy grew up in Malawi, then moved to the U. K. where he earned a master’s degree in pharmaceutical sciences at the University of Leicester and a Ph.D. at Warwick University, studying the plant hormone Auxin and its receptor. He is a postdoc research fellow in Yin Chen’s lab in the School of Life Sciences at Warwick where his research interests are primarily studying protein ligand interactions with an interest in drug discovery projects.

Related articles

From the journals: JBC
Isabel Casas
From the journals: JBC
Isabel Casas
In memoriam: Tsuneo Omura
F. Peter Guengerich, Bettie Sue Masters & Ken-Ichirou Morohashi

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Corals and sea anemones turn sunscreen into toxins
News

Corals and sea anemones turn sunscreen into toxins

May 14, 2022

Understanding how could help save coral reefs.

The body’s response to allergic asthma also helps protect against COVID-19
News

The body’s response to allergic asthma also helps protect against COVID-19

May 14, 2022

It all comes down to an immune system protein known as interleukin-13

Stem cell–derived model offers insights on gene activity and addiction
News

Stem cell–derived model offers insights on gene activity and addiction

May 13, 2022

“Our work here is the first experimental study to demonstrate gene desensitization in human neuronal cells, specifically in response to dopamine,” first author Ryan Tam said.

Changes in cholesterol production lead to tragic octopus death spiral
News

Changes in cholesterol production lead to tragic octopus death spiral

May 12, 2022

New research finds remarkable similarities in steroid hormone biology across cephalopods, mice and humans that can have dire consequences when disrupted.

From the journals: JLR
Journal News

From the journals: JLR

May 12, 2022

How our bodies adapt to nutrient starvation in cancer. How mimetic peptide treats systemic inflammation. Read about these recent JLR studies.

The gift of sight
Health Observance

The gift of sight

May 12, 2022

The human eye is an evolutionary phenomenon, one of aesthetic beauty and profound function. May is Healthy Vision Month.