Journal News

Stabilizing the enzyme in fish odor syndrome

Mussa Quareshy
By Mussa Quareshy
Dec. 6, 2020

Fish odor syndrome, or trimethylaminuria, is a disease in which the liver cannot break down the smelly chemical trimethylamine, or TMA, that is produced by enzymes from bacteria residing in the gut. There is no cure for fish odor syndrome, which gives people an unpleasant fishy smell that can affect breath, sweat, urine and vaginal fluids.

FishOdor-226x600.jpg
University of Warwick
Top: protein crystals of CntA enzyme; middle: a cartoon depiction of CntA enzyme in its functional trimeric state; bottom: detailed view of carnitine bound in the active site of CntA prior to cleavage.

Our research team at the University of Warwick is working to prevent the syndrome through studying the enzyme in the gut that produces trimethylamine.

Fish odor syndrome starts when an enzyme pathway in the gut called CntA/B produces TMA. The enzyme breaks down a TMA precursor called L-carnitine, which is found in dairy, fish and meat. If an individual lacks a functional liver enzyme called FMO3, they cannot degrade TMA into a non-smelly chemical form, trimethylamine oxide, or TMAO. The TMA then builds up in the body and ends up in bodily fluids.

In a recent paper, published in the Journal of Biological Chemistry, our team in Yin Chen's lab at Warwick's School of Life Sciences focused on the CntA protein of the CntA/B enzyme, to stabilize and study it.

CntA/B is a notoriously hard enzyme to study, but once it was stabilized, we were able to gain insight into how CntA perceives its L-carnitine substrate with a 3D crystal structure model, and by studying the complete electron transfer pathway, we could see how the protein is able to turn over TMA.

Now that we understand how exactly TMA is produced in the gut and that the enzyme can be inhibited, there are grounds for further research into future discovery of drugs targeting the TMA-producing enzyme in the human gut.

We have identified novel, drug-like inhibitors that can inhibit CntA function and thus TMA formation with the potential to attenuate TMA formation in the gut microbiome. This is vital not only for people who have fish odor syndrome, but also because TMA can accelerate atherosclerosis and heart disease.
 

This article was adapted from a University of Warwick press release. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Mussa Quareshy
Mussa Quareshy

Mussa Quareshy grew up in Malawi, then moved to the U. K. where he earned a master’s degree in pharmaceutical sciences at the University of Leicester and a Ph.D. at Warwick University, studying the plant hormone Auxin and its receptor. He is a postdoc research fellow in Yin Chen’s lab in the School of Life Sciences at Warwick where his research interests are primarily studying protein ligand interactions with an interest in drug discovery projects.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Iron could be key to treating a global parasitic disease
Journal News

Iron could be key to treating a global parasitic disease

April 16, 2024

A study has found that leishmaniasis causes body-wide changes in iron balance, leading to red blood cell damage.

Environmental DNA is everywhere
News

Environmental DNA is everywhere

April 14, 2024

The ability to extract trace bits of DNA from soil, water, and even air is revolutionizing science. Are there pitfalls?

Early COVID-19 research is riddled with poor methods and low-quality results
News

Early COVID-19 research is riddled with poor methods and low-quality results

April 13, 2024

The pandemic worsened, but didn’t create, this problem for science.

From the journals: MCP
Journal News

From the journals: MCP

April 12, 2024

Three views of mass spec: analyzing secreted protein spectra, imaging mass spectrometry for clinical use and spectral libraries for MS data analysis. Read about these recent papers.

Understanding the fat science
Journal News

Understanding the fat science

April 9, 2024

Researchers at UCLA investigate lipid remodeling in the liver for energy generation.

No oxygen? No problem
Journal News

No oxygen? No problem

April 8, 2024

By studying how electric fish survive in hypoxic streams for months at time, researchers may find new ways to target tumors.