Journal News

A hormone’s guide to healthy living

Himanshi Bhatia
Nov. 9, 2021

Research in the 20th century showed us the ill effects of our lifestyle choices. Countless studies demonstrated that smoking and drinking were gateways to cancer and other diseases. Scientists now are finding that the modern-day way of life — a sedentary lifestyle and a high-calorie diet — can have equally disastrous health impacts. The constant obsession with screen time has affected our metabolism in a way that makes us more susceptible to developing insulin resistance, thereby leading to Type 2 diabetes.

On the other hand, the human body can synthesize molecules that keep our metabolism in check and prevent it from going awry. These molecules, called adipokines, are hormones secreted by fat cells (and other metabolic organs in the body) and serve as the body’s defense mechanism against metabolic anomalies.

A team of researchers in Philipp Scherer and Wen-hong Li’s labs at the University of Texas Southwestern Medical Center takes a special interest in the physiological effects of adipokines. Toshiharu Onodera, a postdoctoral fellow, said, “We have had a longstanding interest in pancreatic islets with respect to the relationship between adiponectin and the health and functionality of insulin-producing cells because there is a substantial presence of adiponectin receptors in pancreatic beta cells.”

In a study published recently in the Journal of Lipid Research, Onodera, Ebrahim Zadeh and their team evaluated the effects of a modified version of an adipokine, adiponectin, on glucose and lipid metabolism.

Hormone-guide-890x534.jpg
Wen-hong Li
PEG linker enhances bioavailability and improves receptor binding.

 

“Adiponectin is a multifaceted protein with beneficial effects on many organs, such as the liver, pancreas, muscles, heart and kidneys,” Onodera said. “These effects are mediated by adiponectin receptors.”

While different ligands (also called adipokine agonists) can activate adiponectin receptors, none of them are clinically useful. One such agonist, AdipoRon, is limited further by its poor solubility and bioavailability.

“In our study,” Onodera said, “we expand on the protective effects of AdipoRon by generating a series of AdipoRon analogs containing amphiphilic ethylene glycol chains.”

In studies of mice that were genetically altered to have low insulin and fed a high-fat diet, the researchers found that their bodies absorbed one of these analogs, AdipoRonPEG5, better than the others, and it effectively reduced toxic lipid species in organs, resulting in dramatically improved therapeutic effect on diabetes and fatty liver disease. After administration of AdipoRonPEG5, the mice had improved blood glucose levels, decreased lipotoxicity in the pancreas, reduced fibrosis in adipose tissue and reduced gluconeogenesis in the liver.

“We believe that we made substantial progress towards the improvement of an existing molecule of importance for diabetes and fatty liver disease,” Onodera said.

Although AdipoRonPEG5 has longer half-life in circulation than its un-PEGylated form, the team was concerned about its frequent dosage, so they administered the agonist to mice twice a day for five days to observe a protective effect. “The next step is to generate longer-acting versions of these adiponectin receptor agonists,” Onodera said.

These findings could present a novel mechanism for the design of diabetes-combating drugs.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Himanshi Bhatia

Himanshi Bhatia is a postdoctoral research associate at the Washington University in St. Louis and is passionate about science communication.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RNA binding proteins with benefits
Research Spotlight

RNA binding proteins with benefits

Jan. 22, 2025

Blanton Tolbert studies the biochemical mechanisms of RNA virus replication while working to make science more accessible, and more interesting, for all people.

A proteomic hunt for phosphosites in the aging brain
Journal News

A proteomic hunt for phosphosites in the aging brain

Jan. 21, 2025

In older mice, researchers found more enzymes that phosphorylate other proteins and changes in phosphorylation levels in proteins associated with neurodegeneration.

What if a virus could reverse antibiotic resistance?
News

What if a virus could reverse antibiotic resistance?

Jan. 19, 2025

In promising experiments, phage therapy forces bacteria into a no-win dilemma that lowers their defenses against drugs they’d evolved to withstand.

Tapping into bacterial conversations
News

Tapping into bacterial conversations

Jan. 18, 2025

Bonnie Bassler has helped usher in a new branch of science centered on quorum sensing, the process by which bacteria communicate with one another and orchestrate collective tasks.

From the journals: JLR
Journal News

From the journals: JLR

Jan. 17, 2025

Can diacylglycerol combat athlete hyperuricemia? Inhibiting a cardiac enzyme improves metabolism. Targeting angiopoietins to combat liver injury. Read about papers on these topics recently published in the Journal of Lipid Research.

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.