Journal News

JBC: What happens to plasmalogens, the phospholipids nobody likes to think about

Sasha Mushegian
Nov. 1, 2018

Alzheimer’s disease patients lose up to 60 percent of a component called plasmalogen from the membranes of the cells in their brains, but we don’t know how or why. In a paper in the Journal of Biological Chemistry, researchers at Washington University in St. Louis provide the first report of an enzyme that breaks down plasmalogens, a breakthrough in understanding the molecular processes that occur during Alzheimer’s and other diseases.

Plasmalogens are particularly abundant in the heart and brain, where they are involved in structuring cell membranes and mediating signals. Plasmalogens are phospholipids defined by a particular chemical bond called a vinyl-ether linkage. Due to the technical difficulties of studying plasmalogens, however, many aspects of their biology are unknown, including how the vinyl-ether bond is broken to break down plasmalogens in cells.

This diagram shows signaling pathways affected by cytochrome c’s degradation of plasmalogen. Courtesy of Richard GrossRichard Gross is the researcher at Washington University who oversaw the new study. “These molecules, plasmalogens, have been swept under the rug because nobody likes to think about them,” Gross said. “(They’re) hard to work with. They’re susceptible to light, they’re stable in only certain solvents, they have a limited lifespan after they’re synthesized unless extreme precautions are taken, and they’re expensive to make and synthesize.”

In the new study, Gross’ team performed painstaking experiments to find the elusive mechanism by which plasmalogens are enzymatically degraded. Cytochrome c is a protein typically found in mitochondria, where it facilitates electron transport. It can be released into the cell under stressful conditions.

Gross’ team showed that cytochrome c released from the mitochondria can acquire a new function: acting as a peroxidase to catalyze the breakdown of plasmalogens in the cell. Further, the products of this reaction are two different lipid signaling molecules that previously were not known to originate from plasmalogen breakdown.

“That was one thing that surprised us,” Gross said of the signaling products. He said he also was surprised by the ease with which the bond is broken. “The implication is that there is probably a lot of plasmalogen (breakdown) that’s going on in conditions of oxidative stress.”

The results tie in with another observation about the brain cells of Alzheimer’s disease patients, which is that they often have dysfunctional mitochondria and a resultant release of cytochrome c.

Gross is interested in delving deeper into how and why plasmalogen loss occurs in Alzheimer’s patients, particularly those who develop the disease in old age, not due to familial mutations. Gross speculates that as people age, the accumulation of reactive oxygen species leads to cytochrome c release, activation of its peroxidase activity and plasmalogen breakdown in many membranes.

The results also have implications for understanding disorders in the heart and other plasmalogen-rich tissues, integrating studies of mitochondria, cell membranes and cell signaling under stressful conditions.

“This is like a quantum jump into the future,” Gross said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.