Journal News

From the journals: JLR

Heather Masson–Forsythe
By Heather Masson–Forsythe
Oct. 19, 2021

Predicting drug-induced lysosomal fat buildup. Minimizing side effects of atherosclerosis treatment. Finding a key to sepsis diagnosis and treatment. Read about papers on these topics recently published in the Journal of Lipid Research.

Predicting drug-induced lysosomal fat buildup

The accumulation of phospholipids in lysosomes, called drug-induced phospholipidosis, or DIP, is associated with more than 50 FDA-approved drugs, making it one of the most common forms of drug toxicity. Typically impacting the lungs, liver or kidney, DIP is involved with diseases including pulmonary fibrosis and fatty liver disease.

Due to the serious implications of DIP, physicians terminate drug treatment when it is detected, limiting interventions that might be critical to a patient’s recovery. Despite its prevalence, researchers do not yet clearly understand DIP’s causes and implications, making it difficult to predict if a drug will cause the condition and to separate specific drug targets from downstream effects.

A recent study in the Journal of Lipid Research by Vania Hinkovska–Galcheva and fellow researchers at the University of Michigan Medical School and the University of Michigan identified lysosomal phospholipase A2, or PLA2G15, as a key target of cationic amphiphilic drugs such as amiodarone, which regularly are implicated in phospholipidosis. After assaying libraries of compounds known to cause phospholipidosis as well as drugs not previously reported to do so, the team found that inhibition of this enzyme’s activity, measured by a decrease in 1-O-acylceramide formation, was an excellent candidate for predicting DIP. 

While inhibition of PLA2G15 is clear, the researchers do not propose direct enzyme binding as the cause but rather the interference of electrostatic charge interactions between positively charged regions of the enzyme’s lipid-binding domain and negatively charged phospholipid head groups. The team was able to make immediate use of this finding, demonstrating phospholipidosis in vitro for 36 PLA2G15-inhibiting compounds not previously known to cause phospholipidosis. They also identified several drugs known to cause phospholipidosis but not predicted to do so by other models. PLA2G15 inhibition provides a potentially robust tool for toxicity screening during drug development.

FattyLiverDisease-890x586.jpg
NIH/FLICKR
A microscopic image of liver tissue affected by nonalcoholic fatty liver disease. The large and small white spots are excess fat droplets filling liver cells, or hepatocytes.

 

Minimizing side effects of atherosclerosis treatment

High levels of very low-density lipoprotein, or VLDL, and low-density lipoprotein, or LDL, which is produced from breaking down VLDL, are associated with the buildup of fats within arteries, causing atherosclerotic cardiovascular disease, or ASCVD, a leading cause of death worldwide. Overproduction of VLDL can result from hereditary disease, obesity and insulin resistance, while inhibition of VLDL secretion significantly reduces ASCVD development. Available strategies to inhibit VLDL secretion from the liver typically result in the accumulation of fat inside the liver along with subsequent complications. 

In a recent study published in the Journal of Lipid Research, Bingxiang Wang and colleagues at the Shandong Academy of Medical Sciences, along with collaborators from the University of Alberta, demonstrated in mice that deficiency in cargo receptor Surfeit 4, or Surf4, not only reduces VLDL secretion and ASCVD development but does so without fat accumulation and liver damage. Additionally, the team found that knockdown of Surf4 reduced plasma cholesterol levels but did not affect the secretion of PCSK9, an enzyme that increases LDL cholesterol plasma levels by degrading a key receptor involved in clearing plasma LDL. The work contributes to researchers’ growing understanding of lipid metabolism regulation and how to minimize side effects of ASCVD treatment. 

 

Lipids: The key to sepsis diagnosis and treatment

Sepsis is an inflammatory disease caused by the body’s extreme reaction to a bacterial or fungal infection. Through a complex cascade of microcirculatory collapse and dysregulated immune response, sepsis rapidly causes tissue damage and organ failure, with mortality increasing by 4% each hour sepsis remains undiagnosed. The diversity of immune and vascular responses combined with multiorgan failure makes sepsis the most common cause of death in hospitalized patients and the biochemical basis extremely difficult to deconstruct. Sepsis treatment is restricted to antibiotics and supportive care, and despite the critical need, researchers have yet to identify clinically relevant and specific diagnostic biomarkers. Lipids may be the answer to both diagnosis and treatment.

As a part of a thematic review series, Kaushalya Amunugama and colleagues at the St. Louis University School of Medicine recently published a review in the Journal of Lipid Research highlighting the importance of dysregulated lipid metabolism in sepsis pathology and of key lipid-regulating enzymes. Many bioactive lipids directly contribute to sepsis progression, while other lipids are byproducts of sepsis-associated metabolic changes. The authors summarize existing evidence of the lipid–sepsis connection in support of presenting lipids as candidates for diagnostic biomarkers as well as targets of therapeutics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Heather Masson–Forsythe
Heather Masson–Forsythe

Heather Masson–Forsythe is a Ph.D. candidate in biochemistry and biophysics in Elisar Barbar’s lab at Oregon State University. She is passionate about communicating science through writing and dance.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Is there a mystery in the monkeypox antiviral?
News

Is there a mystery in the monkeypox antiviral?

May 24, 2022

As monkeypox becomes an international concern, interest grows in tecovirimat; this smallpox drug targets a structural protein that helps wrap the virus in a second lipid bilayer.

Researchers investigate self-regulation of an enzyme with critical cellular functions
News

Researchers investigate self-regulation of an enzyme with critical cellular functions

May 24, 2022

They found that one mechanism of CK1 activity, and thus one mechanism of regulation, is the self-phosphorylation of a conserved amino acid residue in its catalytic domain.

What is monkeypox?
Science Communication

What is monkeypox?

May 23, 2022

A microbiologist explains what’s known about this smallpox cousin.

A simple method to determine phase preference of proteins on live cell membranes
Journal News

A simple method to determine phase preference of proteins on live cell membranes

May 22, 2022

“The phase preference of molecules used to be difficult and time-consuming to establish. This new method, detected by chance, provides results in at most 15 minutes on live cells,” Thorsten Wohland said.

Study of Alzheimer’s marker prompts warning about serine supplements
News

Study of Alzheimer’s marker prompts warning about serine supplements

May 20, 2022

They have been advertised to improve memory and cognitive function.

Why is the 100-year-old BCG vaccine so broadly protective in newborns?
News

Why is the 100-year-old BCG vaccine so broadly protective in newborns?

May 19, 2022

Study finds changes in metabolite and lipid profiles, providing clues for designing future vaccines for newborns.