Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Swarnali  Roy
Oct. 1, 2025

Atherosclerotic plaques form when cholesterol, fat and blood cells gradually build up in artery walls, narrowing them and reducing oxygen-rich blood flow from the heart to the body. The Centers for Disease Control and Prevention and the Cleveland Clinic report that one in five U.S. deaths is caused by heart disease, and half of adults ages 45–84 have atherosclerosis without knowing it. High low-density lipoprotein, or LDL, levels raise the risk of atherosclerosis; while apolipoprotein A1, or ApoA1, a major component of high-density lipoprotein, or HDL, protects against it.

Foamy macrophage, often associated with atherosclerotic plaques, with several irregular vacuoles in the cytoplasm surrounded by erythroblasts (arrow).

In a recently published article in the Journal of Lipid Research, Alexander S. Qian and colleagues at McMaster University and Hamilton Health Sciences studied how ApoA1 modulates Bim, a cell-death mediator, in the development of atherosclerotic plaques and necrotic cores. Cholesterol buildup triggers endoplasmic reticulum, or ER, stress in macrophages, which increases Bim expression and leads to macrophage death.

In mice, overexpression of ApoA1 reduces plaque formation. The researchers engineered mice lacking low-density lipoprotein receptors, or LDLR, with or without ApoA1 and fed them a high-fat diet for 10 weeks. Mice lacking both LDLR and ApoA1 developed larger plaques, bigger necrotic cores and higher Bim expression. In bone marrow transplant studies, LDLR- and ApoA1-deficient mice that received Bim-deficient marrow showed reduced plaque and necrotic core size. They also had more circulating immune cells and lower cholesterol and triglyceride levels, regardless of ApoA1 status. The team plans to further study how ApoA1 lowers Bim protein levels in macrophages within plaques.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Swarnali  Roy

Swarnali Roy is a postdoctoral researcher at the National Institute of Diabetes and Digestive and Kidney Diseases, NIH and an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacteriophage protein could make queso fresco safer
Journal News

Bacteriophage protein could make queso fresco safer

Dec. 18, 2025

Researchers characterized the structure and function of PlyP100, a bacteriophage protein that shows promise as a food-safe antimicrobial for preventing Listeria monocytogenes growth in fresh cheeses.

Building the blueprint to block HIV
Profile

Building the blueprint to block HIV

Dec. 11, 2025

Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Journal News

Gut microbes hijack cancer pathway in high-fat diets

Dec. 10, 2025

Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.