Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Swarnali  Roy
Oct. 1, 2025

Atherosclerotic plaques form when cholesterol, fat and blood cells gradually build up in artery walls, narrowing them and reducing oxygen-rich blood flow from the heart to the body. The Centers for Disease Control and Prevention and the Cleveland Clinic report that one in five U.S. deaths is caused by heart disease, and half of adults ages 45–84 have atherosclerosis without knowing it. High low-density lipoprotein, or LDL, levels raise the risk of atherosclerosis; while apolipoprotein A1, or ApoA1, a major component of high-density lipoprotein, or HDL, protects against it.

Foamy macrophage, often associated with atherosclerotic plaques, with several irregular vacuoles in the cytoplasm surrounded by erythroblasts (arrow).

In a recently published article in the Journal of Lipid Research, Alexander S. Qian and colleagues at McMaster University and Hamilton Health Sciences studied how ApoA1 modulates Bim, a cell-death mediator, in the development of atherosclerotic plaques and necrotic cores. Cholesterol buildup triggers endoplasmic reticulum, or ER, stress in macrophages, which increases Bim expression and leads to macrophage death.

In mice, overexpression of ApoA1 reduces plaque formation. The researchers engineered mice lacking low-density lipoprotein receptors, or LDLR, with or without ApoA1 and fed them a high-fat diet for 10 weeks. Mice lacking both LDLR and ApoA1 developed larger plaques, bigger necrotic cores and higher Bim expression. In bone marrow transplant studies, LDLR- and ApoA1-deficient mice that received Bim-deficient marrow showed reduced plaque and necrotic core size. They also had more circulating immune cells and lower cholesterol and triglyceride levels, regardless of ApoA1 status. The team plans to further study how ApoA1 lowers Bim protein levels in macrophages within plaques.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Swarnali  Roy

Swarnali Roy is a postdoctoral researcher at the National Institute of Diabetes and Digestive and Kidney Diseases, NIH and an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Proteomics reveals protein shifts in diabetic eye disease
Journal News

Proteomics reveals protein shifts in diabetic eye disease

Nov. 11, 2025

Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent MCP paper.

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.