News

Researchers discover toxin that kills bacteria in unprecedented ways

Finding paves the way for a new generation of antibiotics
Blake Dillon
By Blake Dillon
Sept. 17, 2022

McMaster researchers have discovered a previously unknown bacteria-killing toxin that could pave the way for a new generation of antibiotics.

The study, led by John Whitney at the Michael G. DeGroote Institute for Infectious Disease Research, shows that the bacterial pathogen Pseudomonas aeruginosa, known to cause hospital-acquired infections such as pneumonia, secretes a toxin that has evolved to kill other species of bacteria.

Nathan Bullen (left) and John Whitney (right) examine crystals of the purified toxin, which they used to solve its 3-dimensional structure through X-ray crystallography
Courtesy of Blake Dillon/McMaster University
John Whitney (right) and Nathan Bullen have studied this toxin for nearly three years.

For Whitney, the key aspect of his discovery is not just that this toxin kills bacteria, but how it does so.

“This research is significant, because it shows that the toxin targets essential RNA molecules of other bacteria, effectively rendering them non-functional,” says Whitney, an associate professor in the department of biochemistry and biomedical sciences.

“Like humans, bacteria require properly functioning RNA in order to live.”

First study author Nathan Bullen, a graduate student in biochemistry and biomedical sciences, describes it as “a total assault on the cell” because of the number of essential pathways depend on functional RNAs.

Whitney and Bullen, together with colleagues at Imperial College London and the University of Manitoba, have studied this toxin for nearly three years to understand exactly how it functions at a molecular level.

This is the graphical abstract for the team's paper, "An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs."

The breakthrough, published in the journal Molecular Cell, was achieved by Bullen after rigorous experimentation on common targets of toxins, such as protein and DNA molecules, before eventually testing the toxin against RNA.

This discovery breaks well-established precedents set by protein-targeting toxins secreted by other bacteria, such as those that cause cholera and diphtheria.

Researchers say that this development holds great potential for future research that could eventually lead to new innovations that combat infection-causing bacteria.

Whitney says future antibiotic development can build on the newly discovered vulnerability.

This article was republished with permission from the Institute for Infectious Disease Research at McMaster University. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Blake Dillon
Blake Dillon

Blake Dillon is a multimedia and communication specialist at the Institute for Infectious Disease Research at McMaster University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.