Journal News

From the journals: JLR

Clementine Adeyemi
By Clementine Adeyemi
Sept. 7, 2021

An oil check that might be key to brain health. A deletion that reveals more than meets the eye. What cholesterol does between cells. Read about papers on these topics recently published in the Journal of Lipid Research.
 

This oil check might be key to brain health

FTJ-JLR-9-7-21-445x603.jpg
Cristian Newman/Unsplash
One in five Americans over age 65 is predicted to suffer from neurodegenerative
diseases by 2030.

Chances are, you know someone affected by dementia — an umbrella of neurodegenerative conditions encompassing Alzheimer’s, Parkinson’s and other diseases that affect about 50 million people worldwide. Drugs developed to treat these conditions have been largely ineffective. However, a new study in the Journal of Lipid Research by Larry Spears and colleagues at Washington University in St. Louis links a lack of the lipid plasmalogen to the vascular abnormalities associated with these brain diseases.

Plasmalogens are the most common type of phospholipid in the tissues of the nervous system and help protect the brain against oxidative stress, which is known to cause progressive neurodegenerative conditions. Plasmalogens are produced by the endothelial cells that make up the blood–brain barrier, vital for the protection of the brain. Hence, these lipids play two key roles in protecting the brain and keeping it running smoothly.

The authors of this study genetically altered mice so their endothelial cells would have no PexRAP, an enzyme necessary for the synthesis of plasmalogen. Without PexRAP activity, circulating levels of plasmalogens decreased. This resulted in behavioral changes in the mutant mice and structural changes in their brains that are synonymous with neurodegeneration. The behavior changes included decreased physical activity, decreased attention to their environment and impaired spatial memory. Structurally, the number of neuroprotective glial cells increased, signaling a reaction by the nervous system as it sensed damage due to the lack of plasmalogens. In addition, the researchers saw a decrease in tyrosine hydroxylase activity, a consequence of neurodegeneration.

The authors concluded that plasmalogen decreases in the nervous system after vascular damage, leading to impaired brain health. Hence, checking on the levels of the brain’s oil, plasmalogen, could serve as an indicator of brain health.

 

Deletion reveals more than meets the eye

Sphingolipids more commonly are known by their precursor, the popular skincare ingredient ceramides. However, these lipids play a more critical role in a host of physiological processes such as programmed cell death and inflammatory cascades, yet researchers know little about their regulation.

A recent study in the Journal of Lipid Research by Christopher Green and colleagues at Virginia Commonwealth University highlights the complexity of regulating sphingolipid biosynthesis. The researchers investigated the role of the different functional forms of mammalian ORMDL, a protein that negatively regulates the activity of serine palmitoyltransferase complex, or SPT, the enzyme driving sphingolipid biosynthesis. Using a gene-editing tool, the authors developed stable, carcinogenic human lung cells with various functional forms of ORMDL to detect the unique roles of each form.

The results show how these various functional forms of ORMDL uniquely affect sphingolipid metabolism, such as by determining the production of certain sphingolipid groups or by increasing the levels of certain ceramide species over others. These effects have broad implications for the critical body functions, such as cell growth and motility, that require sphingolipids.

 

What cholesterol does between cells

Two hundred years after Robert Hooke discovered cells, scientists got curious about the invisible barriers surrounding animal cells. Almost 50 years later, researchers described the dual nature of the fluid mosaic model of the cell membrane as both hydrophobic and hydrophilic due to its lipid and protein components. Chief among the lipids is cholesterol.

Cholesterol allows for a firm yet permeable cell membrane and is involved in steroid production. Now, a new study in the Journal of Lipid Research by Pawanthi Buwaneka and colleagues at the University of Illinois at Chicago has uncovered additional roles in cell signaling for cholesterol, specifically in the inner layer of the double-layered membrane.

Based on their previous work spotlighting interactions between cholesterol in this layer and intracellular proteins, the researchers’ recent experiments using various cell types including fibroblasts and Leydig cells illustrate how these interactions precede cellular signaling. Using advanced imaging analysis, the authors show how the level of cholesterol in the inner layer is tightly regulated to control intracellular signaling processes. This new role of cholesterol as a signal propagator could have implications for studying cell physiology.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Clementine Adeyemi
Clementine Adeyemi

Clementine Adeyemi is a Ph.D. biomedical student at the University of Cincinnati. Outside the lab, she is passionate about outreach through organizations such as Empowering Female Minds in Stem to broaden who gets to do science.

Related articles

From the journals: JLR
Nivedita Uday Hegdekar
From the journals: JLR
Himanshi Bhatia
From the journals: JLR
Swarnali Roy
From the journals: JLR
Meric Ozturk
From the journals: JLR
Laura Elyse McCormick

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.