Lipid News

Hippocampal lipids linked to brain disorders

Luísa Santa–Marinha Tiago Gil Oliveira
By Luísa Santa–Marinha and Tiago Gil Oliveira
Sept. 6, 2022

The hippocampus is a fundamental brain region for memory processes, and its function is impaired early in the onset of neurodegenerative disorders such as Alzheimer’s disease, or AD.

The hippocampus (shown in red) can be organized along its longitudinal axis, segregating two poles: the posterior and anterior (in humans) or the dorsal and ventral (in rodents).
Ana Coelho
The hippocampus (shown in red) can be organized along its longitudinal axis, segregating two poles: the posterior and anterior (in humans) or the dorsal and ventral (in rodents).

Most studies addressing the hippocampus have considered it as a whole structure, but it also can be divided into subregions along its longitudinal axis, segregating dorsal and ventral poles. For instance, the dorsal hippocampus, or DH, contributes differentially to specific dimensions of spatial memory, while the ventral hippocampus, or VH, is proposed to be implicated predominantly in behaviors linked to emotions.

Lipids are major brain constituents, so we performed mass spectrometry lipidomic analysis of hippocampal subregions along the longitudinal axis. Within the lipidomic signatures we uncovered, we observed that the DH presents increased levels of phosphatidic acid and decreased levels of phosphatidylcholine compared to the VH, potentially implicating the phospholipase D, or PLD, pathway in DH–VH axis regulation.

Although six PLDs are found in mammals, only PLD1 and PLD2 have reported canonical PLD activity, which is based on the hydrolysis of phosphatidylcholine in the presence of water to free choline and phosphatidic acid, a known second messenger signaling lipid. Using mice that were genetically altered to lack Pld1 and Pld2 genes, we gathered data to support the hypothesis that PLD1 and PLD2 are the only contributors to PLD activity in the mouse forebrain.

PLD1 ablation significantly decreased the hippocampal levels of phosphatidic acid, affecting predominantly the DH lipidome, but upon PLD2 ablation, only minor lipid changes occurred, including increased PLD products suggesting PLD1 upregulation.

Since PLD1 was the main PLD activity source, we then focused predominantly on characterizing the effects of PLD1 ablation and showed that the mice lacking Pld1 presented specific deficits in novel object recognition and social interaction, disruption in dendritic arborization, and altered synaptic plasticity in the DH. Overall, we determined that PLD1 ablation impairs hippocampal functioning, predominantly affecting the DH, which, due to its allocated functions, is predicted to be particularly affected in Alzheimer’s disease.

We previously had observed that PLD2 ablation is protective in mice genetically altered to have Alzheimer’s. Future studies should address cross-regulation mechanisms between PLD1 and PLD2 and how these can be used to develop therapeutic strategies to treat or prevent hippocampal dysfunction and memory deficits.

Want more lipid research news?

Check out Lipid Trends, a curated collection of hot picks from the world of lipid research, brought to you by LIPID MAPS.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Luísa Santa–Marinha
Luísa Santa–Marinha

Luísa Santa–Marinha recently earned a Ph.D. in medicine and is now a postdoctoral researcher at the Life and Health Sciences Research Institute in the School of Medicine, University of Minho, and a psychiatry resident at Centro Hospitalar Vila Nova de Gaia/Espinho in Vila Nova de Gaia, Portugal.

Tiago Gil Oliveira
Tiago Gil Oliveira

Tiago Gil Oliveira is an assistant professor at the Life and Health Sciences Research Institute in the School of Medicine, University of Minho, and a neuroradiologist at Hospital de Braga, both in Braga, Portugal.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Journal News

Computational tool helps scientists create novel bug sprays

May 20, 2025

Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Interview

Meet Lan Huang

May 19, 2025

Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.