Lipid News

Lipid regulation of mitochondria

Yoshihiro Adachi Miho Iijima Hiromi Sesaki
By Yoshihiro Adachi, Miho Iijima and Hiromi Sesaki
May 1, 2019

Mitochondria are dynamic organelles that grow, divide and fuse in most of the human body’s cells; these dynamic membrane processes are critical for mitochondrial health.

Our laboratory studies mitochondrial division and fusion, focusing on three mechanochemical dynamin-related GTPases: Drp1, mitofusin and Opa1. Drp1 is a soluble GTPase that splits the mitochondrial membrane. Mitofusin and Opa1 are integral membrane GTPases that work together to fuse the mitochondrial membranes. Mutations in each of these enzymes lead to human diseases that mainly affect central and peripheral nervous systems.

Mitochondrial division and fusion need to be balanced to maintain functional mitochondrial size, structure and distribution within cells. This dynamic balance is controlled by several layers of mechanisms, including gene expression, post-translational modifications and protein degradation of these GTPases and their binding partners. In addition, mitochondrial phospholipids play important roles in regulation of mitochondrial dynamics.

CardiolipinCardiolipin, or CL, in the mitochondrial outer membrane promotes oligomerization of Drp1 to drive mitochondrial division; CL in the inner membrane mediates fusion through heterotypic interactions with Opa1. Hiromi Sesaki et al.Drp1 interacts with two phospholipids, cardiolipin, or CL, and phosphatidic acid, or PA, in the mitochondrial outer membrane, or OM. CL is synthesized in the mitochondrial inner membrane, or IM, and a fraction of CL is transported to the OM. Drp1 is recruited to the mitochondria through its receptor proteins on the surface of mitochondria; binding to CL stimulates Drp1 to assemble into high-order oligomers that function as a division machinery. The machinery is regulated further by PA. Binding to PA restrains the assembled machinery from initiating the constriction of the mitochondrial membranes, likely creating a priming step for mitochondrial division. Binding sites for CL and PA are different in Drp1; therefore, these phospholipids may create different degrees of the regulation through a combination of single or concurrent binding to Drp1.

The production of CL and PA is a dynamic process in the OM. As described above, CL is transported to the OM from the IM. This transport may be regulated through dynamic interactions at the intramitochondrial OM-IM contact sites. In the OM, there is a phospholipase D, MitoPLD, which converts CL to PA. Since MitoPLD directly binds Drp1, conversion of stimulatory CL to inhibitory PA may happen locally in the vicinity of the division machinery. PA also is produced in the endoplasmic reticulum, or ER, and imported into the OM through ER-mitochondrial contact sites. Drp1 often divides mitochondria at these sites. Mitochondrial PA levels also may be regulated by this interorganellar interaction.

PA changes the mitochondrial membrane’s biophysical properties and facilitates mitofusion-mediated membrane fusion. Opa1, similar to Drp1, binds CL, and this interaction drives membrane fusion. Therefore, lipid transport and synthesis coupled to intramitochondrial contact site dynamics and interorganellar interactions play key roles in controlling mitochondrial dynamics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Yoshihiro Adachi
Yoshihiro Adachi

Yoshihiro Adachi is a postdoctoral fellow in Hiromi Sesaki’s lab in the department of cell biology at the Johns Hopkins University School of Medicine.

Miho Iijima
Miho Iijima

Miho Iijima is an associate professor in the department of cell biology at the Johns Hopkins University School of Medicine.

Hiromi Sesaki
Hiromi Sesaki

Hiromi Sesaki is a professor in the department of cell biology at the Johns Hopkins University School of Medicine.

Related articles

Cholesterol lures in coronavirus
Marissa Locke Rottinghaus
Hippocampal lipids linked to brain disorders
Luísa Santa–Marinha & Tiago Gil Oliveira
Targeting cardiolipin modification in a genetic disorder
Arianna F. Anzmann, Olivia Sniezek & Hilary Vernon

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Cells have more mini ‘organs’ than researchers thought
News

Cells have more mini ‘organs’ than researchers thought

Dec. 15, 2024

Membraneless organelles, also called biomolecular condensates, are changing how scientists think about protein chemistry, various diseases and even the origin of life.

Institute launches a new AI initiative to power biological research
News

Institute launches a new AI initiative to power biological research

Dec. 14, 2024

Stowers investigator Julia Zeitlinger selected to head effort and leverage cutting-edge computational techniques to accelerate scientific discoveries.

From the journals: JLR
Journal News

From the journals: JLR

Dec. 13, 2024

Fixation method to quantify brain metabolites. Belly fat and liver disease crosstalk. Stopping heart diseases in schizophrenic patients. Read about the recent JLR papers on these topics.

Does a protein hold the key to Alzheimer’s?
Journal News

Does a protein hold the key to Alzheimer’s?

Dec. 10, 2024

Researchers in Maryland and Massachusetts team up to study how SORL1 promotes tau trafficking and seeding in cells that leads to the neurodegenerative disorder.

Cracking the recipe for perfect plant-based eggs
News

Cracking the recipe for perfect plant-based eggs

Dec. 8, 2024

It involves finding just the right proteins. With new ingredients and processes, the next generation of substitutes will be not just more egg-like, but potentially more nutritious.

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough
News

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough

Dec. 7, 2024

Lee Kroos and Ben Orlando have reported the first high-resolution experimentally determined structures of the intramembrane protease SpolVFB.