Journal News

JBC: A shadowy
organizational hub in cells

Sasha Mushegian
Aug. 1, 2018

On a cellular level, we are all hanging on by delicate threads. All cells are crisscrossed by a network of strands called microtubules, which act as railroad tracks that move cargo around the cell, as winch cables that separate chromosomes during cell division and as scaffolding components that give a cell its shape.

Because of its essential role in the cell cycle, microtubule assembly is the target of essential anti-cancer chemotherapies (paclitaxel, for example), which stop out-of-control cell division by destabilizing microtubules. Now, researchers have shed light on the role that a large, enigmatic protein plays in assembling microtubules, paving the way for better treatments. The results of the research were published in the Journal of Biological Chemistry.
A large protein coordinates cellular components required for microtubule assembly.Courtesy of James Goldenring, Vanderbilt University

In 1999, James Goldenring’s research team at Vanderbilt University showed that protein kinase A-anchoring protein 350, or AKAP350, is a component of the centrosome, a center of microtubule organization in human cells. The team later showed that microtubules did not form efficiently without AKAP350. But the way in which AKAP350 regulated microtubule formation was difficult to understand, largely because of the technical challenges posed by AKAP350’s heft.

“Since this protein is so huge, it’s very difficult to study it,” said Elena Kolobova, the research scientist in Goldenring’s laboratory who led the new study. “A few years ago, we finally came to develop synthetic constructs of (AKAP350), which allowed us to go to the next level of evaluation and function.”

 

Using a combination of detailed biochemical analyses and super-resolution microscopy, the team finally was able to gain some understanding of the complex roles that AKAP350 plays in regulating microtubules in cells. AKAP350 formed a physical bridge spanning components of the centrosome. And AKAP350 appeared to recruit multiple proteins involved in building microtubules, coordinating their function in one spot.

“I like to call this thing Deep Space Nine. Everybody comes to hang out at AKAP350,” Goldenring said. “I think we’ve only scratched the surface of the structural organization that this protein is probably providing.”

Mutations in AKAP350 have been associated with cardiac arrhythmias, so it will be of interest to see whether the protein’s role in microtubule assembly contributes to proper heart function as well.

“I think (AKAP350) is a fundamental regulator of cell function,” Goldenring said. “So we need to know a lot more about this protein before we can even begin looking at what it might mean for disease.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

AI harnesses tumor genetics to predict treatment response
News

AI harnesses tumor genetics to predict treatment response

Feb. 18, 2024

Many paths lead to cancer resistance; artificial intelligence can decode them all simultaneously.

Progression of ALS linked to a membrane and an enzyme
News

Progression of ALS linked to a membrane and an enzyme

Feb. 17, 2024

Diminished activities of the enzyme TBK1 in mitochondrial-associated membrane reduces motor neurons’ tolerance to stressors, a causative factor in the disease.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 16, 2024

Breaking down atherosclerotic plaque. Location matters in liver disease. A lipidomic profile drives liver disease. Read about recent papers on these topics.

Sibling study reveals mechanism for genetic disease
Journal News

Sibling study reveals mechanism for genetic disease

Feb. 13, 2024

Using proteomics experiments, researchers found that old proteins pile up in the mitochondria of people with a form of adult-onset muscular dystrophy.

Why don’t fruit bats get diabetes?
News

Why don’t fruit bats get diabetes?

Feb. 11, 2024

New understanding of how these animals have adapted to a high-sugar diet could lead to treatments for people.

The remaining frontiers in fighting hepatitis C
Interview

The remaining frontiers in fighting hepatitis C

Feb. 10, 2024

Charles Rice, whose work was key to finding treatments for this life-threatening virus, discusses the scientific journey and challenges that persist.