Journal News

New diagnostic finds intact sperm in infertile men

Researchers discover novel protein biomarkers to visualize well-developed sperm to determine if surgical sperm extraction may be successful
Marissa Locke Rottinghaus
June 14, 2023

In a recent study, researchers created a diagnostic test to identify functional sperm in infertile men that could change the treatment of male infertility and assisted reproductive technology.

“Male infertility is a recognized issue and deserves scientific and clinical attention,” said Andrei Drabovich, an assistant professor of laboratory medicine and pathology at the University of Alberta and corresponding author of the Molecular & Cellular Proteomics study.

Immunofluorescence microscopy of sperm cells and testicular tissues. AKAP4 is shown in green, ASPX in red, and cell nuclei in blue.

One in every six couples trying to conceive experience infertility issues. In fact, about 10% of men in the United States are infertile. The most common cause of severe male infertility is a condition known as nonobstructive azoospermia, which results in the absence of sperm in the ejaculate due to poor sperm, or spermatozoa, development.

While assisted reproductive technology has improved exponentially over the past 50 years, according to Drabovich, extracting sperm from men with NOA can take up to 10 hours in the operating room and has varying rates of success.

“Sometimes surgeons can only extract a few intact spermatozoa during a surgery that takes many hours,” Drabovich said.

That’s why he set out to develop a noninvasive method to diagnose NOA and figure out if these men contain intact sperm that could fertilize an egg.

“Tests that show the presence or absence of intact spermatozoa in semen can give a good clue of the total numbers of spermatozoa in the patient,” Drabovich said. “If there are intact spermatozoa in the ejaculate that is a green light for urologist and the surgeon to go ahead with the surgery. However, it is an extreme challenge to find intact spermatozoa in a field of debris.”

Drabovich performed mass spectrometry on semen from men with normal fertility as well as infertile men with biopsy-confirmed obstructive azoospermia or NOA.

After analysis, his team identified two proteins, AKAP4 and ASPX, that are found in intact sperm in men with NOA. They showed that ASPX is located in the head of sperm while AKAPA4 is found in the tail using a method called imaging flow cytometry. During imaging flow cytometry, a machine takes images of individual cells. After running these samples, computational algorithms help the researchers mine the millions of images of cell debris and underdeveloped sperm to identify a few intact sperm cells.   

Since the roles of AKAP4 and ASPX are not fully understood, Drabovich plans to investigate how they contribute to sperm function.

He also said that his work may lead to male birth control drugs in the future.

“We want to see if we can flip the story and try to work on male contraceptives,” Drabovich said. “If we know the function of the protein, we may be able to inhibit it to create a nonhormonal male contraceptive, which is a much desired type of drug at the moment.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Marissa Locke Rottinghaus

Marissa Locke Rottinghaus is the science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.