Journal News

‘The potential of LPC-DHA as a dietary supplement is exciting’

Researchers explore benefits of omega-3 lipid for acute kidney injury
Dionne Seah
By Dionne Seah
Aug. 12, 2023

Researchers from Singapore have identified a potential dietary supplement that may improve recovery following acute kidney injury. The finding, published in the Journal of Lipid Research, comes from a long-running research program at Duke–NUS Medical School investigating how cells take up a specialised omega-3 lipid called LPC-DHA.

A cross-sectional view of the preclinical model’s kidney revealing that the omega-3 lysolipid transporter Mfsd2a (green color) is found specifically in the S3 segment of the proximal tubules
Randy Y.J. Loke
A cross-sectional view of the preclinical model’s kidney revealing that the omega-3 lysolipid transporter Mfsd2a (green color) is found specifically in the S3 segment of the proximal tubules

A major public health concern, AKI affects an estimated 13.3 million people globally each year and has a mortality rate of 20% to 50%, depending on the economic status of the country and stage of the disease. One of the main causes of AKI is ischemic reperfusion injury, which occurs when the kidney’s blood supply is restored after a period of restricted blood flow and poor oxygen delivery due to illness, injury or surgical intervention. In particular, it damages a crucial part of the kidney called the S3 proximal tubules that regulate the levels of absorption of water and soluble substances, including salts.

“AKI is a serious health problem with limited treatment options,” said Randy Loke, first author of the study and an M.D.-Ph.D. student with the Duke–NUS Cardiovascular & Metabolic Disorders Programme. “We sought to understand how these tubules repair themselves and found that the activity of the protein Mfsd2a, which transports LPC-DHA into cells, is a key factor influencing the rate of recovery of kidney function after ischemic reperfusion injury.”

In their study, the researchers discovered that preclinical models with reduced levels of Mfsd2a showed delayed recovery, increased damage and inflammation after kidney injury. However, when these models were treated with LPC-DHA, their kidney function improved and the damage was reduced. LPC-DHA also restored the structure of the S3 proximal tubules, helping them function properly again.

Professor David Silver, Deputy Director of Duke-NUS’ Cardiovascular & Metabolic Disorders (CVMD) Programme, and Dr Randy Loke
David Silver, left, with Randy Loke.

“While more research is needed, the potential of LPC-DHA as a dietary supplement is exciting for future recipients who have suffered from AKI,” said David Silver, the senior author of the study and deputy director of the CVMD Programme. “As our results suggest that LPC-DHA could become a safe and effective treatment that offers lifelong protection, its potential can help protect the kidneys and aid in recovery for these individuals.”

In the next phase, the research team plans to continue investigating the beneficial functions of LPC in the kidney and are aiming to initiate clinical testing of LPC supplements to determine their effectiveness in improving renal function and recovery following AKI in patients.

They also plan to continue their investigations of the protein Mfsd2a to learn more about its role in LPC transport and its involvement in diseases affecting other tissues and organs. Previous research by Silver’s group, with collaborators from other institutions, has already highlighted the significance of the protein’s LPC-transporting activities in diseases of other organs, including the liver, lungs and brain.

This article was first published by the Duke–NUS Medical School in Singapore. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Dionne Seah
Dionne Seah

When they're not reading or spending time with their birds and dogs, Dionne Seah can be found finding new ways to share people's stories with the world.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

These proteins have been secretly managing your cells
News

These proteins have been secretly managing your cells

Sept. 15, 2024

Scientists have long known that histones spool DNA and help regulate genes. They may be doing a lot more.

At the Salton Sea, uncovering the culprit of lung disease
News

At the Salton Sea, uncovering the culprit of lung disease

Sept. 14, 2024

Scientists have long suspected a link between the dust and poor respiratory health. According to recent findings, the prime suspect is a naturally occurring toxin.

From the journals: MCP
Journal News

From the journals: MCP

Sept. 13, 2024

The importance of sharing proteomics data. Detecting nitrotyrosine-containing proteins. Analyzing yeast proteasomes. Read about these recent articles.

Using a network to snare the cause of kidney disease
Journal News

Using a network to snare the cause of kidney disease

Sept. 10, 2024

A microfluidic device that mimics blood capillaries may help in early detection, and proper measures could reduce the risk of renal failures.

All about cholesterol
News

All about cholesterol

Sept. 8, 2024

The latest science on how blood levels of HDL, LDL and more relate to cardiovascular health.

From the Journals: JBC
Journal News

From the Journals: JBC

Sept. 6, 2024

Nuclear actin affects transcription elongation. Proteostasis in Alzheimer’s disease. RNA and splicing affect cancer invasiveness. Read about recent papers on these topics.