Feature

Branches bursting with secrets

Kratom leaves contain a panoply of unidentified compounds
John Arnst
June 1, 2017

While mitragynine, 7-hydroxymitragynine and a few dozen other alkaloids make up the bulk of the 57 phytochemicals that have been isolated from kratom leaves, the plants contain a panoply of currently unidentified compounds and metabolites.

“The average plant leaf is somewhere between 35,000 and 50,000 distinct phytochemicals, and we really can identify about 1,000 if we’re lucky,” says Susan Murch, a chemist at the University of British Columbia. “You’re looking at a minimum 34,000 unknowns. In your glass of merlot, you’re looking at 7,000 unknowns; in your cup of coffee, over about 6,800 unknowns.”

The leaf of Mitragyna speciosa contains at least 34,000 unknown phytochemicals.thorporre/Wikimedia Commons

Identifying these unknown compounds and mapping their enzymatic relationships to one another by use of mathematical equations is known as metabolomics; each study can take up to three to four years due to its scale. “You do a very small mass spec analysis, and then you spend a year mining data. It’s a massive bioinformatics program,” says Murch.

Murch recently published a literature review in the Journal of Ethnopharmacology that detailed the history and chemistry of kratom and its sister species in Western medical literature with Web of Science, Google Scholar, the Royal Museum for Central Africa, the Internet Archive, the Hathi Trust and the Biodiversity Heritage Library.

Murch and her collaborator Paula N. Brown are hoping to get a metabolomics study involving kratom up and going within the next few years. “There are no metabolomics studies out there that really are definitive in terms of the different varieties, the different strains, the different things people are using,” she says.

Identifying the thousands of unknown metabolites, or intermediary components, within kratom leaves will be essential to understanding how the plant products are differently processed by populations across the globe.

“Kratom is traditionally used by a fairly specific population of Vietnam, Thailand and Southeast Asia, and so we don’t know about its nutrigenomics effects,” says Murch. “Assuming that a population in Southeast Asia will respond the same as a population anywhere else in the world is a bit of a leap of faith.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The coronavirus may cause fat cells to miscommunicate, leading to diabetes
News

The coronavirus may cause fat cells to miscommunicate, leading to diabetes

Jan. 22, 2022

COVID-19 patients with high blood sugar had low levels of a hormone made by fat.

Researchers make sense of scents
Journal News

Researchers make sense of scents

Jan. 20, 2022

A team in India has created a user-friendly, web browser–based AI tool that can help identify and predict odorant chemicals and their receptors.

From the journals: MCP
Journal News

From the journals: MCP

Jan. 19, 2022

Making heads or tails of flatworm regeneration — and more from the journal Molecular & Cellular Proteomics.

Birds of a feather in Philly
Annual Meeting

Birds of a feather in Philly

Jan. 13, 2022

According to Meetings Committee chair Dan Raben, “Interest group events give folks in various specific disciplines and subdisciplines an opportunity to hold a mini symposium before the meeting actually begins.”

From the journals: JLR
Journal News

From the journals: JLR

Jan. 12, 2022

Targeting protein folding to combat Niemann–Pick type C1. Pinpointing substrate specificity for phospholipase A2S. A high-throughput assay of lipase activity. Read about articles on these topics recently published in the Journal of Lipid Research.

Brain wrinkles and folds matter
Feature

Brain wrinkles and folds matter

Jan. 8, 2022

Researchers are studying the mechanics of how they form.