Using DNA barcodes to capture local biodiversity
Extracting DNA barcodes from local plants and insects might sound like high-tech lab work, but thanks to Alana Deo’s team and their partnership with Cold Spring Harbor Laboratory, California residents are getting a hands-on opportunity to explore the biodiversity in their own backyards.
DNA barcodes, short segments of DNA about 700 nucleotides long, are well conserved across organisms but vary widely between species. This variation means that DNA barcodes act as a species-specific identifier, distinguishing one species from another, much like a fingerprint does for a person. Common DNA barcodes reside in the genes that encode mitochondria in animals and chloroplasts in plants.

At the University of California, Santa Barbara, fourth-year undergraduate Alana Deo and her team are collecting DNA barcodes with the aim of cataloguing local biodiversity. The team is enlisting the help of an unorthodox group of volunteers: the public.
“We really want to engage the public in scientific experiments,” Deo said. “We want them to feel like they're being a part of something and learning and be able to give those opportunities to people who might not have them otherwise.”
Deo’s team, using protocols and supplies provided by Cold Spring Harbor Laboratory DNA Learning Center, adapted a DNA barcoding procedure to allow kids, teens and adults to act as the researchers. At events hosted at local sites like a high school and the Santa Barbara Botanical Gardens, participants can collect their own samples of plants and insects from the surrounding area.
Participants then learn how to extract the DNA from their sample, amplify the DNA using PCR and confirm the results via gel electrophoresis. If they don’t have time for all the steps, Alana’s team finishes the job back at the lab.
After the hands-on activity with the public, Deo plans to send the samples off to be sequenced and analyzed. The sequences are ultimately published by Cold Spring Harbor Laboratory in GenBank, a database operated by the National Institutes of Health. Participants can track their samples on a webpage with the DNA barcode sequence of their sample. Each sequence collected and banked lists the citizen scientists’ names, giving them a window into science.
"Publishing the sequences on GenBank gives participants a genuine sense of scientific contribution,” Deo said. “It sparks their curiosity, deepens engagement in science, and empowers them to see themselves as true scientists.”
Deo hopes to expand this program into a summer camp for kids through SciTrek, a community outreach program founded at UCSB that aims to expose elementary and secondary students to science. The team’s collaboration with the public will allow them to document local biodiversity and ecological trends in the Santa Barbara area.
“Not only do we learn, the undergrads (also) learn, the professors learn, the teachers learn and the (volunteers) learn,” Deo said.

Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.