Journal News

How chronic pain shows up in urine

Researchers distinguish urinary pelvic pain from healthy controls — and from other chronic pain diseases
Renae   Crossing
May 10, 2022

Chronic pain diseases are underresearched — particularly for women, particularly with pelvic pain. Almost certainly, someone you know suffers from this. For people with urinary chronic pelvic pain syndrome, or UCPPS, the need to urinate is particularly frequent or urgent, or pelvic pain is prominent, or both. It’s often simply a diagnosis of exclusion, and there is a lack of effective treatments.

Urine sample

Using protein signatures in urine, researchers have been able to distinguish UCPPS from other chronic pain diseases, including myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS, as well as fibromyalgia and irritable bowel syndrome.

According to a recent article in the journal Molecular & Cellular Proteomics, lurking in urine all along were pronounced differences in the proteins related to chronic pain for different sexes — and leads for diagnosis and treatment.

We often think of pain in terms of blunt force, but the workings of chronic pain are more like pulling thousands of tiny strings in the theater of a cell. To develop new treatments and diagnostics, we need to know which proteins are pulling strings or playing other parts.

Finding those proteins is the most powerful aspect of this study, according to first author John Froehlich, professor of surgery at Harvard Medical School. He said his team is “measuring the real things that carry out functions,” along with the upstream bosses of those things.

Why not a blood test? Urine is close to the pelvis and can be more sensitive than blood (or not as good at homeostasis). Also, patients are happy: one less jab for a blood draw.

In a coordinated national effort, the scientists received 244 urine samples from the masses, labeled them “for the masses” (that is, for the technique called mass spectrometry), blasted them to smithereens — smithereens ordered by mass and charge, for identification — and loaded the data onto the Proteome Discoverer version 2.2.

What did they find?

The levels of nine proteins were different between people with UCPPS and healthy controls.

There were parts of the scaffolds in between cells, and proteins involved in inflammation. The researchers found proteins known for increasing bleeding (previously implicated in UCPPS), for reducing the migration of immune cells, and for the development of epithelial tissue — the lining around blood vessels and organs or their cavities. They also found proteins that work in the postal service of cells, the Golgi.

But what if these protein patterns were due to chronic pain generally, not uniquely UCPPS?

The scientists ran comparisons with people with other chronic pain diseases, and three proteins stood out uniquely in UCPPS. Next, the team wants to conduct a larger study to see if these unconventional fingerprints correlate with disease severity or duration.

Froehlich said he would be “tickled” if other researchers mined the open data to help people with chronic pain diseases. The growing global burden of ME/CFS includes an estimated 46% of people with long COVID-19 who meet criteria for the disease.

Froehlich calls corresponding author Marsha Moses a “powerhouse” behind this research.

He also credits his mother. After completing a Ph.D. on proteins in breast milk (“My mom was a midwife”), Froehlich pivoted to a fluid with its own sort of richness. He simply changed streams.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Renae   Crossing

Renae Crossing is a writer and former teacher. She holds a first-class master’s degree in life science from the Hong Kong University of Science and Technology and a first-class master’s in teaching from the University of Melbourne.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
News

Spider-like proteins spin defenses to control immunity

Oct. 17, 2025

Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
Feature

A biological camera: How AI is transforming retinal imaging

Oct. 15, 2025

AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
Essay

AI in the lab: The power of smarter questions

Oct. 14, 2025

An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Feature

Training AI to uncover novel antimicrobials

Oct. 9, 2025

Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.