Journal News

JBC: Antibiotic resistance in pandemic cholera

Sasha Mushegian
May 1, 2018

Cholera is a devastating disease for millions worldwide, primarily in developing countries, and the dominant type of cholera today is naturally resistant to one type of antibiotic usually used as a treatment of last resort.

This image shows an electron micrograph of the bacterium Vibrio cholerae, the causative agent of cholera. courtesy of M. Stephen Trent/University of Georgia

Researchers at the University of Georgia now have shown that the enzyme that makes the El Tor family of Vibrio cholera resistant to those antibiotics has a different mechanism of action from any comparable proteins observed in bacteria so far. Understanding that mechanism better equips researchers to overcome the challenge it presents in a world with increasing antibiotic resistance. The research was published in the Journal of Biological Chemistry.

Cationic antimicrobial peptides, or CAMPs, are produced naturally by bacteria and by animals’ innate immune systems and also are synthesized for use as last-line drugs. Cholera strains achieve resistance to CAMPs by chemically disguising the bacterium’s cell wall, which prevents CAMPs from binding, disrupting the wall and killing the bacterium. M. Stephen Trent’s research team in Georgia previously had shown that a group of three proteins carried out this modification and had elucidated the functions of two of the proteins. The team reported the role of the third protein — the missing piece in understanding CAMP resistance — in the new paper.

Jeremy Henderson, then a graduate student, led a research project that showed that this enzyme, AlmG, attaches glycine, the smallest of the amino acids, to lipid A, one of the components of the outer membrane of the bacterial cell. This modification changes the charge of the lipid A molecules, preventing CAMPs from binding.

Lipid A modification is a defense mechanism observed in other bacteria, but detailed biochemical characterization of AlmG showed that the way this process occurred in cholera was unique.

“It became apparent over the course of our work that how (this enzyme) improves shield functionality is quite different than would be expected based on what we know about groups of enzymes that look similar,” Henderson said.

AlmG is structured differently from other lipid A-modifying enzymes, with a different active site responsible for carrying out the modification. In addition, AlmG can add either one or two glycines to the same lipid A molecule, which also has not been observed in other bacteria. “It just opens up the door for this operating with a completely different mechanism than what’s been described in the literature for related proteins,” Henderson said.

Genes encoding determinants of antibiotic resistance can spread between different species of bacteria, so the unique mechanism of CAMP drug resistance in V. cholerae is of potential concern if it jumps to bacteria already resistant to first-line drugs. “The level of protection conferred by this particular modification in Vibrio cholerae puts it in a league of its own,” Henderson said.

Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Finding the right research path
Interview

Finding the right research path

Sept. 16, 2021

Karen Bornfeldt, an associate editor for the Journal of Lipid Research, investigates how diabetes increases cardiovascular disease risk.

From the journals: JBC
Journal News

From the journals: JBC

Sept. 15, 2021

Antibody interactions that change cytotoxicity. An atlas for macrophage activation. Anti–Zika virus natural products. Read about papers on these and other topics.

Noboru Sueoka (1929 – 2021)
Retrospective

Noboru Sueoka (1929 – 2021)

Sept. 13, 2021

Sueoka made widely known contributions to our understanding of DNA replication. Indeed, he coined the term “origin of replication.”

From CRISPR to glowing proteins to optogenetics
Feature

From CRISPR to glowing proteins to optogenetics

Sept. 12, 2021

Three pioneering technologies have forever altered how researchers do their work and promise to revolutionize medicine, from correcting genetic disorders to treating degenerative brain diseases.

Lobsters hold the secret of a long, cancer-free life in their genes
News

Lobsters hold the secret of a long, cancer-free life in their genes

Sept. 11, 2021

More than a mere delicacy, the humble lobster could teach us a lot about healthy aging.

Personal chemistry: Proteomics tackles privacy concerns
Feature

Personal chemistry: Proteomics tackles privacy concerns

Sept. 9, 2021

Sharing raw data is an important norm for the proteomics community. But as clinical studies become more detailed, researchers may need to clamp down to protect patient privacy.