Journal News

Scavenger protein receptor aids the transport of lipoproteins

Oluwadamilola “Dami” Oke
April 11, 2025

Lipoproteins are spherical molecules made up of fat and proteins that play a crucial role in transporting lipids, such as cholesterol and triglycerides, from the liver to other tissues in the body. Anton Potapenko of the University of Zurich, and a team in Switzerland recently published a study in the Journal of Lipid Research detailing structural characteristics of the scavenger receptor B1, or SCARB1, a protein that mediates lipid exchange between many cell types and facilitates uptake of high density lipoproteins, or HDL, and low density lipoproteins, or LDL, in some cell types. The gene encoding SCARB1 produces two major splice variants that share structural similarities but differ in their carboxy-terminal domains. Researchers wanted to understand if these splice variants play different roles in the cellular uptake of LDL and HDL by endothelial cells.

Illustration of a low density lipoprotein particle.
Illustration of a low density lipoprotein particle.

The researchers examined cultured endothelial cells to understand how expression of the two SCARB1 variants affected the binding, uptake and trafficking of lipoproteins. They found that variants 1 and 2 localized to the cell surface, and endosomes and lysosomes, respectively. Overexpression of variant 1 increased both HDL and LDL binding and uptake. However, overexpression of variant 2 also increased the uptake of either lipoprotein, but not via surface binding. Therefore, the researchers concluded that variant 2 facilitates lipoprotein uptake indirectly by regulatory and indirect mechanisms.

The study suggests that the two major splice variants of SCARB1 facilitate transendothelial transport of HDL and LDL by different mechanisms, either dependent or independent of the adapter proteins. Because of the limitations of overexpression, it will be important to examine how eliminating each SCARB1 splice variant affects cellular lipid metabolism and lipoprotein trafficking.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Oluwadamilola “Dami” Oke

Oluwadamilola “Dami” Oke is a Ph.D. candidate of biomedical engineering at the George Washington University with an interest in communication and outreach for science advancement. She is an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.