News

More than meets the eye: Researchers uncover the microbial secrets of dry eye

Insights into the ocular microbiome could have implications beyond eye health
Nancy D. Lamontagne
March 26, 2024

Researchers have used advanced sequencing technology to determine how the mix of microbes present in patients with healthy eyes differs from the mix found in patients with dry eye. The new work could lead to improved treatments for various eye problems and for diseases affecting other parts of the body.

Microbial communities in and on our body — collectively referred to as the human microbiota — play an essential role in keeping us healthy. Although many studies have focused on microbial communities in our gut, understanding the microbiota present in other body sites is critical for advancing our knowledge of human health and developing targeted interventions for disease prevention and treatment.

Scientists from Stephen F. Austin State University discovered that people with dry eye have a different mix of microbes in their eyes. The findings could lead to better treatments.
Scientists from Stephen F. Austin State University discovered that people with dry eye have a different mix of microbes in their eyes. The findings could lead to better treatments.

“Once we understand the eye microbiota properly, it will improve disease diagnosis at an early stage,” said research team leader Alexandra Van Kley, a professor at Stephen F. Austin State University in Nacogdoches, Texas. “This knowledge can also serve as a catalyst for developing innovative therapies aimed at preventing and treating ocular disease as well as those that affect the central microbiome site: the gut.”

Pallavi Sharma, a graduate student in Van Kley’s lab, will present the research at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, which will be held March 23–26 in San Antonio.

“Human microbiome research suggests a strong connection between the gut microbiome and the brain and eyes,” said Sharma. “Any alteration in the gut microbiome affects other organs and can lead to disease. Therefore, we are trying to identify patterns of an imbalance between the types of microbes present in a person's ocular microbiome for people with different health problems.”

For the study, the researchers collected eye samples from 30 volunteers using a swab and then performed 16S rRNA sequencing and bioinformatic analysis to determine the microbiome distribution for patients with healthy eyes and those with dry eyes.

The analysis showed that Streptococcus and Pedobacter bacteria species were the most prevalent microbes in healthy eyes while more Acinetobacter species were present in the eye microbiomes of people with dry eye. “We think the metabolites produced by these bacteria are responsible for dry eye conditions,” said Sharma. “We are performing further research to understand the metabolic pathways associated with the Acinetobacter to better understand the disease.”

Next, the researchers would like to explore the gut microbiome of the patients with dry eye to better understand how it related to the eye microbe differences they observed.

Pallavi Sharma will present this research during a poster session from 4:30 to 6:30 p.m. CDT on Tuesday, March 26, in the exhibit hall of the Henry B. González Convention Center (Poster Board No. 277) (abstract). 

Note: Alexandra Van Kley is listed in the Discover BMB schedule as the presenter, but Pallavi Sharma will be presenting this work.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

AI-designed biomarker improves malaria diagnostics
Journal News

AI-designed biomarker improves malaria diagnostics

Oct. 8, 2025

Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Oct. 8, 2025

Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Journal News

Antibiotic sensor directly binds drug in resistant bacteria

Oct. 8, 2025

Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.