ASBMB Annual Meeting

Mining millets

The bioactive potential of ancient grains
Nicole Lynn
March 23, 2024

Millets are ancient grains and cereals with origins in Africa, the Middle East and Asian countries including China and India, where they are food staples. In addition to growing in harsh environments and enduring drought or attacks by pests, millets are often less processed and yield higher nutritional benefits than grains such as corn, rice and wheat.

Photo of a bowl of little millet
University of Illinois at Chicago
A bowl of little millet, one of the five grains profiled in this study, before oil and lipid extraction.

Those conventional grains of the Western diet are well studied, but scientists know little about the bioactive food species in major and minor millets, including the distribution of lipids, or fat-soluble compounds; the composition of fatty acids, or lipid building blocks; and the presence of nutraceuticals, or substances in millets and food that benefit physiological health.

Sugasini Dhavamani, a research assistant professor at the University of Illinois at Chicago, and her team have studied the nutri-lipidomic profiles of major and minor millet seeds and oils.

“I am passionate about lipid research,” Dhavamani said, “I love working at the University of Illinois because we have amazing equipment and facilities, and great means for collaboration.”

The oils of grains are not commercially available, so the researchers first extracted lipids from the millets, then analyzed samples using high-performance liquid chromatography and gas chromatography-mass spectrometry.

“The oil extraction takes time,” Dhavamani said, adding that the researchers face other challenges. “After extraction we often get a low quantity of lipids, which can also cause difficulty. Stability is a concern because the lipids are easily oxidized.”

University of Illinois at Chicago
Sugasini Dhavamani in her lab at the University of Illinois at Chicago, processing and analyzing gas chromatography–mass spectrometry data obtained from the millet seeds and oils.

After profiling sorghum millet, little millet, finger millet, proso millet, kodo millet, pearl millet and foxtail millet, Dhavamani and colleagues found that oleic acid, linoleic acid and alpha-linoleic acid, or omega-9,-6 and -3, are the three major fatty acid species present in millets and seed oils.

“Most of the millets evaluated contained omega-9 and omega-6 and a small amount of omega-3 fatty acids, which help to lower cholesterol and blood pressure levels, and can benefit chronic disease,” Dhavamani said. “Millets also have nutraceuticals, which are helpful for lowering inflammation.”

In the future, the researchers want to expand this work into animal models, where Dhavamani can assess the health benefits of millet consumption, followed by examining proteomics and metabolomics of millets; however, experiments of this scale require increased funding.

Details

Sugasini Dhavamani will present this research from 5:30 to 6:30 p.m. CDT on Sunday, March 24, at Discover BMB 2024, the American Society for Biochemistry and Molecular Biology annual meeting in San Antonio. Her poster will be at board 326.

Abstract title: Nutri-lipidomics, bioactive lipids and antioxidant potential of major and minor millet seed and oil — a novel approach

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nicole Lynn

Nicole Lynn holds a Ph.D. from UCLA and is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

AI-designed biomarker improves malaria diagnostics
Journal News

AI-designed biomarker improves malaria diagnostics

Oct. 8, 2025

Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Oct. 8, 2025

Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Journal News

Antibiotic sensor directly binds drug in resistant bacteria

Oct. 8, 2025

Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.