Journal News

JLR: miRNAs take a wrecking ball to colorectal cancer

Rachel Evans
By Rachel Evans
March 01, 2018

Analogies for cancer abound, from a military-style battle against villainous cells that mutate and harm the peaceful host to a garden where doctors pluck out the weedy cancer and nourish the helpful immune cells. A laboratory in the molecular oncology group at the Madrid Institute of Advanced Studies, or IMDEA, Research Institute on Food and Health Sciences in Spain sometimes views cancer as an illegal construction project. Researchers who focus on the role of lipid metabolism in cancer describe the disease as an unauthorized building that requires delivery of construction materials (nutrients) as the structure (tumor) grows. Their goal is to understand how to block delivery and use of these materials.

In a paper in the Journal of Lipid Research, these researchers describe how they identified unique microRNA networks that may limit delivery of these resources to cancerous cells and help combat the disease.

The “construction materials” in cancer are often lipids that provide energy for ever-growing cancer cells. Many of these cells have altered lipid metabolism to enable rapid growth and carcinogenesis in a harsh tumor microenvironment. IMDEA researcher Ana Ramirez de Molina and her Ph.D. student, Silvia Cruz Gil, explain that the group previously identified a key pathway in altered lipid metabolism, known as the abnormal acyl-CoA synthetase/stearoyl-CoA desaturase, or ACSL/SCD, lipid network, which promotes invasion and migration of colorectal cancer cells. Inhibitors of the ACSL/SCD network actually reduce cancer cell viability. This network could present a novel colorectal cancer therapy target, so the group wanted to identify inhibitory miRNAs, as these have emerged as “potent epigenetic modulators of cellular homeostasis,” Ramirez de Molina said. In the cancer-as-construction metaphor, these miRNAs are the city workers that come in to block shipments and stop work on the illegal building.

In their latest project, the group sought to identify miRNAs specific to the ACSL/SCD network that combat cancer cells. In extensive bioinformatics assays using miRNA-detecting algorithms, they identified 31 miRNAs that may bind a region of mRNA, leading to reduced expression of the ACSL/SCD network. The researchers then confirmed the roles of miRNAs with RNA and protein detection techniques. They identified three main miRNAs that reduced both RNA and protein expression: miR-544a, miR-142 and miR-19b.

The expression of miRNA-19b corresponded to disease outcome: low levels of expression were correlated with increased symptoms and disease progression. The group used cell invasion assays and biochemical techniques to show that miRNA-19b expression reduces adhesion and invasion through direct targeting of the ACSL/SCD network. They also found that miRNA-19b expression reduced lipid storage and respiratory capacity — curtailing metaphorical resources for the ever-growing building. Treating patients with miRNAs like 19b potentially would provide targeted, tailored reduction of oncogene expression to reduce cancer progression.

In colorectal cancer patients, higher expression of miR-19b is associated with better survival. This can be thought of as having more city workers (miRNAs) to prevent delivery of construction materials for cancer via the ACSL/SCD network.Courtesy of Ana Ramirez de Molina/IMDEA Research Institute on Food and Health Sciences

miRNA levels also may indicate disease severity and give physicians a clearer understanding of individual patients’ cases. Ramirez de Molina encourages health systems to use miRNA detection especially for colorectal cancer, because it often shows minimal symptoms until the disease has spread extensively. She is excited about tools like miRNAs. “The possibility to detect them as early detection biomarkers and to modulate their action would represent a promising and very advantageous tool against cancer progression,” she said.

Further research on therapeutic use of miRNAs is needed, and these findings provide excellent fuel for such studies. The lab now is studying the ACSL/SCD network in complex tumor organoids of colorectal cancer as well as tumors in other types of cancer. Their discovery of these networks and their respective miRNAs could help identify more city workers in the body that will block progress of this illegal construction; future work likely will shed more light on the networks delivering fuel and supplies to harmful cancer cells.

Rachel Evans
Rachel Evans

Rachel Evans is a Ph.D. candidate at the Johns Hopkins Bloomberg School of Public Health. When she is not in the lab studying malaria development and antimalarial resistance, she is baking up a storm in her apartment.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Rodents in space Keeping bone and muscle strong on the ISS
News

Rodents in space Keeping bone and muscle strong on the ISS

September 19, 2020

Researchers helped mice stay mighty with an experiment to counter the effects of microgravity. The gene treatment might also enhance muscle and bone health on Earth — and in humans.

Understanding the impact of Type 1 diabetes susceptibility genes
Research Spotlight

Understanding the impact of Type 1 diabetes susceptibility genes

September 17, 2020

Starting in eighth grade, a series of mentors who saw something special in Sharifa Love–Rutledge helped her stay on the path to being a researcher — and becoming a mentor to others.

Re-creating coagulation in a lab
Journal News

Re-creating coagulation in a lab

September 15, 2020

Threatened arthropods are in the crossfire of medical and conservation efforts, but new research could benefit horseshoe crabs and humans alike.

Decoy receptor neutralizes coronavirus in cell cultures
News

Decoy receptor neutralizes coronavirus in cell cultures

September 13, 2020

To keep COVID-19 from infecting tissues once they’re exposed, a new study led by Erik Procko suggests luring the virus with an engineered, free-floating receptor protein that binds the virus and blocks infection.

When plants and their microbes are not in sync, the results can be disastrous
News

When plants and their microbes are not in sync, the results can be disastrous

September 06, 2020

Sheng-Yang He’s lab has discovered that plants can develop dysbiosis, a condition similar to inflammatory bowel disease in humans, with severe consequences.

A zest for synthetic biology
Feature

A zest for synthetic biology

September 02, 2020

Metabolic engineers seek to overcome the challenges of mass-producing commodity chemicals, such as limonene, an oil from orange peels.