Journal News

JLR: miRNAs take a wrecking ball to colorectal cancer

Rachel Evans
By Rachel Evans
March 1, 2018

Analogies for cancer abound, from a military-style battle against villainous cells that mutate and harm the peaceful host to a garden where doctors pluck out the weedy cancer and nourish the helpful immune cells. A laboratory in the molecular oncology group at the Madrid Institute of Advanced Studies, or IMDEA, Research Institute on Food and Health Sciences in Spain sometimes views cancer as an illegal construction project. Researchers who focus on the role of lipid metabolism in cancer describe the disease as an unauthorized building that requires delivery of construction materials (nutrients) as the structure (tumor) grows. Their goal is to understand how to block delivery and use of these materials.

In a paper in the Journal of Lipid Research, these researchers describe how they identified unique microRNA networks that may limit delivery of these resources to cancerous cells and help combat the disease.

The “construction materials” in cancer are often lipids that provide energy for ever-growing cancer cells. Many of these cells have altered lipid metabolism to enable rapid growth and carcinogenesis in a harsh tumor microenvironment. IMDEA researcher Ana Ramirez de Molina and her Ph.D. student, Silvia Cruz Gil, explain that the group previously identified a key pathway in altered lipid metabolism, known as the abnormal acyl-CoA synthetase/stearoyl-CoA desaturase, or ACSL/SCD, lipid network, which promotes invasion and migration of colorectal cancer cells. Inhibitors of the ACSL/SCD network actually reduce cancer cell viability. This network could present a novel colorectal cancer therapy target, so the group wanted to identify inhibitory miRNAs, as these have emerged as “potent epigenetic modulators of cellular homeostasis,” Ramirez de Molina said. In the cancer-as-construction metaphor, these miRNAs are the city workers that come in to block shipments and stop work on the illegal building.

In their latest project, the group sought to identify miRNAs specific to the ACSL/SCD network that combat cancer cells. In extensive bioinformatics assays using miRNA-detecting algorithms, they identified 31 miRNAs that may bind a region of mRNA, leading to reduced expression of the ACSL/SCD network. The researchers then confirmed the roles of miRNAs with RNA and protein detection techniques. They identified three main miRNAs that reduced both RNA and protein expression: miR-544a, miR-142 and miR-19b.

The expression of miRNA-19b corresponded to disease outcome: low levels of expression were correlated with increased symptoms and disease progression. The group used cell invasion assays and biochemical techniques to show that miRNA-19b expression reduces adhesion and invasion through direct targeting of the ACSL/SCD network. They also found that miRNA-19b expression reduced lipid storage and respiratory capacity — curtailing metaphorical resources for the ever-growing building. Treating patients with miRNAs like 19b potentially would provide targeted, tailored reduction of oncogene expression to reduce cancer progression.

In colorectal cancer patients, higher expression of miR-19b is associated with better survival. This can be thought of as having more city workers (miRNAs) to prevent delivery of construction materials for cancer via the ACSL/SCD network.Courtesy of Ana Ramirez de Molina/IMDEA Research Institute on Food and Health Sciences

miRNA levels also may indicate disease severity and give physicians a clearer understanding of individual patients’ cases. Ramirez de Molina encourages health systems to use miRNA detection especially for colorectal cancer, because it often shows minimal symptoms until the disease has spread extensively. She is excited about tools like miRNAs. “The possibility to detect them as early detection biomarkers and to modulate their action would represent a promising and very advantageous tool against cancer progression,” she said.

Further research on therapeutic use of miRNAs is needed, and these findings provide excellent fuel for such studies. The lab now is studying the ACSL/SCD network in complex tumor organoids of colorectal cancer as well as tumors in other types of cancer. Their discovery of these networks and their respective miRNAs could help identify more city workers in the body that will block progress of this illegal construction; future work likely will shed more light on the networks delivering fuel and supplies to harmful cancer cells.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Rachel Evans
Rachel Evans

Rachel Evans is a Ph.D. candidate at the Johns Hopkins Bloomberg School of Public Health. When she is not in the lab studying malaria development and antimalarial resistance, she is baking up a storm in her apartment.

Related articles

From the journals: JLR
Latavia Hill
From the journals: JLR
Lisa Learman & Laurel Oldach
From the journals: March 2019
John Arnst, Courtney Chandler, Isha Dey & Catherine Goodman

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

A simple method to determine phase preference of proteins on live cell membranes
Journal News

A simple method to determine phase preference of proteins on live cell membranes

May 22, 2022

“The phase preference of molecules used to be difficult and time-consuming to establish. This new method, detected by chance, provides results in at most 15 minutes on live cells,” Thorsten Wohland said.

Study of Alzheimer’s marker prompts warning about serine supplements
News

Study of Alzheimer’s marker prompts warning about serine supplements

May 20, 2022

They have been advertised to improve memory and cognitive function.

Why is the 100-year-old BCG vaccine so broadly protective in newborns?
News

Why is the 100-year-old BCG vaccine so broadly protective in newborns?

May 19, 2022

Study finds changes in metabolite and lipid profiles, providing clues for designing future vaccines for newborns.

How genome organization influences cell fate
News

How genome organization influences cell fate

May 17, 2022

UC Riverside-led study identifies how blood stem cells maintain their fate.

Corals and sea anemones turn sunscreen into toxins
News

Corals and sea anemones turn sunscreen into toxins

May 14, 2022

Understanding how could help save coral reefs.

The body’s response to allergic asthma also helps protect against COVID-19
News

The body’s response to allergic asthma also helps protect against COVID-19

May 14, 2022

It all comes down to an immune system protein known as interleukin-13