Journal News

JBC: When HIV drugs don’t cooperate

Sasha Mushegian
March 1, 2018

The term “synergy” has gained a reputation as an overused buzzword, but it has a quantifiable definition in pharmacology. Two drugs are considered synergistic if their effectiveness when used together is greater than the sum of their effects alone. That is, a drug that is synergistic with another doesn’t just perform a beneficial function itself but makes the second drug perform its function better.

Researchers at Thomas Jefferson University studying combinations of drugs against HIV have discovered why some drugs sometimes act synergistically but sometimes do not. The paper describing their research was published in the Journal of Biological Chemistry.

Second-line HIV drugs, used after first-line treatments have failed, target several steps in the process by which the virus enters human T cells. Because of the particular steps and proteins they target, two types of these drugs, called co-receptor antagonists and fusion inhibitors, are expected to be synergistic. But multiple previous studies have yielded contradictory results: sometimes these drug classes were indeed strongly synergistic, but sometimes they displayed no synergy at all.

Co-receptor antagonists like maraviroc (marketed under the brand name Selzentry) bind to receptors on host cells known as co-receptors. Fusion inhibitors like enfuvirtide (marketed as Fuzeon) bind to a viral protein called gp41 when it’s in a particular transitional phase. To understand why these drugs don’t always synergize as expected — and to gain a better understanding of the steps of the HIV infection process — associate professor of biochemistry and molecular biology Michael Root and his then-graduate student Koree Ahn applied various doses of maraviroc and enfuvirtide to cells and viruses with slightly different genetic sequences.

“We found that many different factors are important for (determining) whether there’s a synergistic interaction between these two classes of inhibitors or not,” Ahn said.

The first factor was the strength of the binding between enfuvirtide and gp41, which could vary depending on mutations in the viral gene that encodes gp41. If the sequence of the gp41 protein was such that enfuvirtide bound to it very tightly, then enfuvirtide and maraviroc acted synergistically. But the weaker the binding, the weaker the synergy between the two drugs.

This finding implies that when virus proteins evolve to avoid binding drugs, it doesn’t affect only the efficacy of the drug in question; it also affects how much its effects are boosted by other drugs. This is bad news for patients, because adding synergistic drugs to a treatment regimen is thought to be a way to combat loss of drug efficacy.

The second factor affecting synergy was the density of co-receptors on host cells, which can vary significantly among patients. “Some (patients) might have very high levels of (co-receptors) on their T-lymphocytes, and those patients would see robust synergy between these two classes of drugs,” Root said. “Another individual might have lower levels of co-receptors on the cell surface, and therefore not have as robust synergy, or none at all.”

Together, these results suggest that variations in viruses and in patients need to be considered when predicting the efficacy of drug combinations, including newly developed co-receptor antagonists and fusion inhibitors. The paper by Ahn and Root suggests mathematical models for doing just that.

“You need to use these (drugs) with care,” Root said. “Drug resistance can emerge with either one, and when resistance emerges you lose that extra benefit of synergy.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Universal tool for tracking cell-to-cell interactions
News

Universal tool for tracking cell-to-cell interactions

May 19, 2024

A team of researchers has developed LIPSTIC, which can lay the groundwork for a dynamic map tracking physical interactions between different cells — the elusive cellular interactome.

Weedy rice gets competitive boost from its wild neighbors
News

Weedy rice gets competitive boost from its wild neighbors

May 18, 2024

Rice feeds the world. But researchers have found that a look-alike weed has many ways of getting ahead.

From the journals: JLR
Journal News

From the journals: JLR

May 17, 2024

A “T” makes a difference in blood clotting. High cholesterol: two screens are better than one. Biomarkers for cardiovascular risk. Statin-induced changes to the HDL lipidome. Read about recent papers on these topics.

Decoding microglial language
Journal News

Decoding microglial language

May 14, 2024

Emory University scientists characterize extracellular vesicles that facilitate intercellular communication.

What is metabolism?
News

What is metabolism?

May 12, 2024

A biochemist explains how different people convert energy differently – and why that matters for your health.

What’s next in the Ozempic era?
News

What’s next in the Ozempic era?

May 11, 2024

Diabetes, weight loss and now heart health: A new family of drugs is changing the way scientists are thinking about obesity — and more uses are on the horizon.