Journal News

How an oral antiviral drug confuses the replication machinery of SARS-CoV-2

Gillian Rutherford
By Gillian Rutherford
Aug. 26, 2021

A University of Alberta virology lab has uncovered how an oral antiviral drug works to attack the SARS-CoV-2 virus. The findings were published recently in the Journal of Biological Chemistry.

Antiviral-400x336.jpg
Matthias Götte
This mutagenesis model of molnupiravir shows SARS-CoV-2 polymerase
(oval)–mediated nucleotide incorporation into the RNA primer
(grey circles)/template (white circles). Plus and minus signs indicate
RNA sense. A, C, G and U refer to natural nucleotide bases, and M
refers to the active forms of molnupiravir. Three small circles indicate
the triphosphate form of nucleotides. (1) Molnupiravir competes with CTP
for incorporation during synthesis of the negative RNA strand
(copy of the genome). (2) When embedded in the template, molnupiravir
base-pairs with either ATP or GTP. (3) Incorporation of ATP results
in mutagenesis. (4) The mutation is fixed as RNA synthesis continues.
The boxed information provides a summary of events that lead to drug-induced
G to A and C to U transition mutations.

The researchers demonstrated the underlying mechanism of action by which the antiviral drug molnupiravir changes the viral genome, a process known as excessive mutagenesis or error catastrophe.

Matthias Götte is a professor and chair of the medical microbiology and immunology department in the university’s Faculty of Medicine & Dentistry and a member of the Li Ka Shing Institute of Virology. “The polymerase, or replication engine of the virus, mistakes molnupiravir molecules for the natural building blocks required for viral genome replication and mixes them in,” Gotte said. “It causes the polymerase to make sloppy copies — nonsense genomes that are useless and not viable.”

 In clinical trials for efficacy, molnupiravir eliminated SARS-CoV-2 infectivity in newly diagnosed patients after five days of treatment. The drug is taken as a pill, making it much easier to administer than other approved treatments such as remdesivir or monoclonal antibodies, which must be given intravenously.”

“Our work to demonstrate that the effect of the drug is indeed mediated by the viral polymerase is reassuring, because if the drug somehow generates mistakes in the virus and you don’t know how it happens, there could be other mechanisms at work that could also harm the cell. Still, the safety of the drug for COVID-19 patients remains to be evaluated and monitored.”

The ongoing hunt for a weapon against pandemics

The active form of molnupiravir first was identified as a broad-spectrum antiviral at Emory University in Atlanta, Georgia. In 2003, it was developed as a treatment for chronic hepatitis C, but it was dropped due to possible side effects associated with long-term use. The drug then was developed as an influenza antiviral, because the course of treatment for flu is much shorter. The focus of testing switched to SARS-CoV-2 after the COVID-19 pandemic emerged. The drug now is being developed in partnership by Merck and Ridgeback Biotherapeutics.

Merck has made deals with five generic drugmakers in India to make molnupiravir, and at least one of them has applied for approval to use it on an emergency basis, as at least 350,000 new infections are diagnosed in that country every day and vaccination levels are low.

Götte and his team previously uncovered the mechanisms of action for remdesivir, a now-approved treatment that inhibits replication of the SARS-CoV-2 virus, and baloxavir, an influenza drug. 

Next, they will test molnupiravir’s mechanism of action against the polymerases of some of the other viruses the World Health Organization has identified as having high epidemic potential.

“All are recognized as emerging pathogens where we need to develop countermeasures,” Götte said. “We need to be prepared with broad-spectrum antivirals that can serve as a first line of defense.

“Even once vaccines are developed, we can’t get them into all the arms at once,” he said. “To really fight outbreaks and epidemics, one tool is unlikely to be sufficient.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Gillian Rutherford
Gillian Rutherford

Gillian Rutherford is a communications advisor for the University of Alberta.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

COVID-19, preprints and journalists
Science Communication

COVID-19, preprints and journalists

Dec. 3, 2022

Researchers find that news stories often fail to mention when studies haven’t been peer reviewed.

From the journals: MCP
Journal News

From the journals: MCP

Dec. 2, 2022

Muscling in on a signaling pathway. Probing weaknesses in the T cell surface. Improving single-cell proteomics two ways. Read about papers on these topics recently published in the journal Molecular & Cellular Proteomics.

Unconventional phosphoinositide synthesis
Lipid News

Unconventional phosphoinositide synthesis

Nov. 29, 2022

Researchers uncover a clue to how disease-causing bacteria synthesize the tiny lipids known as 3-phosphoinositides to hijack host cells.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 25, 2022

A new way to measure lipoprotein(a). A new source of metabolized cholesterol. A new way to count ceramides. Read about articles on these topics recently published in the Journal of Lipid Research.

How proteolysis controls the Legionnaires’ pathogen
Journal News

How proteolysis controls the Legionnaires’ pathogen

Nov. 24, 2022

The bacterium that causes this severe pneumonia has a biphasic life cycle that depends on regulation of protein homeostasis.

Can membrane stress protect mycobacteria?
Journal News

Can membrane stress protect mycobacteria?

Nov. 22, 2022

While working on an unrelated project, researchers noticed that membrane fluidization led two membrane glycolipids called PIMs to undergo acylation.