Journal News

Strategies for protein quality control

Aswathy Rai
Feb. 16, 2023

Proteins bear the burden of keeping our cells and bodies functioning normally. To do this job, each protein must fold into a unique structure. However, newly formed proteins sometimes misfold and aggregate, resulting in harmful or lost function. 

Protein misfolding can cause human diseases such as cancer and cystic fibrosis and neurogenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. 

Recombinant proteins such as the prion protein shown here often are used to model how proteins misfold and sometimes polymerize in neurodegenerative disorders.
Recombinant proteins such as the prion protein shown here often are used to model how proteins misfold and sometimes polymerize in neurodegenerative disorders.

Per Widlund and his team at the University of Gothenburg study the cellular processing of misfolded proteins. “Proteins are major structural and functional components of cells,” Widlund said. “Like the components of any well-used machine, parts need to be constantly replaced with new ones to prevent breakdown.” 

The process of proteostasis ensures that proteins are built correctly, maintained, delivered to cellular locations and recycled if they become too damaged to do their job properly. “Cells accomplish proteostasis with an intricate protein quality control network that ensures proteins achieve and maintain a functional state,” Widlund said.

The two arms of the protein quality control network work together to prevent the toxic effects of misfolding. The spatial arm segregates misfolded protein aggregates into protective sites called inclusion bodies. The temporal arm ensures the accurate folding of new proteins, refolding of aberrant proteins and degradation of misfolded proteins by the ubiquitin-proteasome or vacuole-autophagy pathways. 

“To combat protein misfolding diseases, we need to understand why the aggregates build up and how the failure to clear them is related to toxicity,” Widlund said. “In other words: why are some misfolding proteins toxic while others are not?”

In a recent study published in the Journal of Biological Chemistry, Widlund and his team established a system, using yeast as a model, to study protein quality control mechanisms that clear misfolded proteins.

The new model system uses three temperature-sensitive nontoxic mutants of three proteins that misfold at 38 degrees Celsius with known differences in aggregate removal rates. The mutants, produced continuously in the cells, do not affect normal functioning or the lifespan of yeast cells, allowing the researchers to study the fundamental mechanisms of aggregation and clearance. 

“We compared how three different misfolding proteins are processed and found that their ability to recruit protein quality control components and their removal varied,” Widlund said. “Each misfolding protein’s specific characteristics play a significant role in its processing, allowing certain proteins to evade protein quality control, potentially leading to toxicity and disease.”

Using a combination of time-lapse microscopy, structured illumination, microscopy and electron microscopy as well as proteasome degradation and clearance assays, the team found that all the misfolded reporter proteins accumulated into aggregates in the same cellular compartments. However, their disaggregation efficiencies varied. 

“We hypothesized that different misfolding proteins contained in the same aggregate would impact each other more,” Widlund said. “We were surprised to see that one misfolding protein did not affect the removal of another, at least in young, healthy cells.” 

Of the three mutants studied, cells cleared misfolded glutamyl-tRNA synthetase less efficiently compared to the other two. And while all three mutants localized in the same cellular compartments, a small percentage of misfolded glutamyl-tRNA synthetase also accumulated in mitochondria. The cells most rapidly cleared misfolded delta 1-pyrroline-5-carboxylate reductase. The authors also report differences in the recruitment of proteasomes by these misfolded proteins. 

“The next step is to examine aged cells,” Widlund said, “and see if this holds for other, more toxic, misfolding proteins.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Aswathy Rai

Aswathy N. Rai is an assistant teaching professor and undergraduate coordinator at Mississippi State University's department of biochemistry, molecular biology, entomology and plant pathology. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

AI-designed biomarker improves malaria diagnostics
Journal News

AI-designed biomarker improves malaria diagnostics

Oct. 8, 2025

Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Oct. 8, 2025

Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Journal News

Antibiotic sensor directly binds drug in resistant bacteria

Oct. 8, 2025

Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.