How transcription factor mutations shape diabetes risk
Diabetes affects hundreds of millions of people worldwide. The disease features elevated blood glucose levels and disrupted fat and protein metabolism. The musculoaponeurotic fibrosarcoma, or MAF, family of transcription factors regulate various processes in tissue development, including hormone production in pancreatic islet cells. Within this family, MAFA and MAFB are essential for development and maturation of insulin- and glucagon-producing cells.

Previous research showed that MAFA and MAFB expression is affected in diabetes, both Type 1 and Type 2. In addition, a mutation in MAFA that prevents phosphorylation of a key serine residue causes monogenic diabetes. Mutation of the equivalent residue in MAFB leads to a pediatric multisystem disorder. In a recent Journal of Biological Chemistry article, Jeeyeon Cha, Xin Tong and Katie Coate from Vanderbilt University and collaborators in the U.S. examined how mutations in conserved DNA-binding domains of the MAF proteins impact their regulation of the insulin gene. The authors used targeted mutagenesis and artificial intelligence structure prediction using AlphaFold 2 for their analysis.
They found one MAFA variant, with a mutation in the conserved DNA-binding region, that exhibited normal activity. The equivalent mutation in MAFB did not retain normal activity. Therefore, the researchers searched for structural differences between the MAFA and MAFB proteins outside of the DNA-binding region that might also contribute to its activity. Their AlphaFold 2 models showed that the two proteins differed in the C-terminal domains. The researchers created chimeras by exchanging the two C-terminal domains of MAFA and MAFB, which changed how each protein regulated the insulin gene. These results help clarify differences between MAFA and MAFB, which of their domains affect activity and possible ways that they contribute to different disease states.
Future studies will focus on regions of MAFA and MAFB that may interact with other coregulators of the insulin gene.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.