Journal News

How transcription factor mutations shape diabetes risk

Isabel Casas Emily Ulrich
April 25, 2025

Diabetes affects hundreds of millions of people worldwide. The disease features elevated blood glucose levels and disrupted fat and protein metabolism. The musculoaponeurotic fibrosarcoma, or MAF, family of transcription factors regulate various processes in tissue development, including hormone production in pancreatic islet cells. Within this family, MAFA and MAFB are essential for development and maturation of insulin- and glucagon-producing cells.

A ribbon diagram of insulin as a hexamer stabilized by two zinc molecules with the coordinating histidine residues shown as sticks.
Benjah-bmm27 via Wikimedia Commons
A ribbon diagram of insulin as a hexamer stabilized by two zinc molecules with the coordinating histidine residues shown as sticks.

Previous research showed that MAFA and MAFB expression is affected in diabetes, both Type 1 and Type 2. In addition, a mutation in MAFA that prevents phosphorylation of a key serine residue causes monogenic diabetes. Mutation of the equivalent residue in MAFB leads to a pediatric multisystem disorder. In a recent Journal of Biological Chemistry article, Jeeyeon Cha, Xin Tong and Katie Coate from Vanderbilt University and collaborators in the U.S. examined how mutations in conserved DNA-binding domains of the MAF proteins impact their regulation of the insulin gene. The authors used targeted mutagenesis and artificial intelligence structure prediction using AlphaFold 2 for their analysis.

They found one MAFA variant, with a mutation in the conserved DNA-binding region, that exhibited normal activity. The equivalent mutation in MAFB did not retain normal activity. Therefore, the researchers searched for structural differences between the MAFA and MAFB proteins outside of the DNA-binding region that might also contribute to its activity. Their AlphaFold 2 models showed that the two proteins differed in the C-terminal domains. The researchers created chimeras by exchanging the two C-terminal domains of MAFA and MAFB, which changed how each protein regulated the insulin gene. These results help clarify differences between MAFA and MAFB, which of their domains affect activity and possible ways that they contribute to different disease states.

Future studies will focus on regions of MAFA and MAFB that may interact with other coregulators of the insulin gene.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Isabel Casas

Isabel Casas is the ASBMB’s publications director.

Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Phosphatases and pupils: A dual legacy
Profile

Phosphatases and pupils: A dual legacy

Nov. 13, 2025

Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.

Extracellular vesicles offer clues to cattle reproduction
Journal News

Extracellular vesicles offer clues to cattle reproduction

Nov. 11, 2025

Extracellular vesicles from pregnant cattle support embryo development better than laboratory models, highlighting their potential to improve reproductive efficiency in bovine embryo cultures. Read more about this recent MCP paper.

Proteomics reveals protein shifts in diabetic eye disease
Journal News

Proteomics reveals protein shifts in diabetic eye disease

Nov. 11, 2025

Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent MCP paper.

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.