Journal News

How transcription factor mutations shape diabetes risk

Isabel Casas Emily Ulrich
April 25, 2025

Diabetes affects hundreds of millions of people worldwide. The disease features elevated blood glucose levels and disrupted fat and protein metabolism. The musculoaponeurotic fibrosarcoma, or MAF, family of transcription factors regulate various processes in tissue development, including hormone production in pancreatic islet cells. Within this family, MAFA and MAFB are essential for development and maturation of insulin- and glucagon-producing cells.

A ribbon diagram of insulin as a hexamer stabilized by two zinc molecules with the coordinating histidine residues shown as sticks.
Benjah-bmm27 via Wikimedia Commons
A ribbon diagram of insulin as a hexamer stabilized by two zinc molecules with the coordinating histidine residues shown as sticks.

Previous research showed that MAFA and MAFB expression is affected in diabetes, both Type 1 and Type 2. In addition, a mutation in MAFA that prevents phosphorylation of a key serine residue causes monogenic diabetes. Mutation of the equivalent residue in MAFB leads to a pediatric multisystem disorder. In a recent Journal of Biological Chemistry article, Jeeyeon Cha, Xin Tong and Katie Coate from Vanderbilt University and collaborators in the U.S. examined how mutations in conserved DNA-binding domains of the MAF proteins impact their regulation of the insulin gene. The authors used targeted mutagenesis and artificial intelligence structure prediction using AlphaFold 2 for their analysis.

They found one MAFA variant, with a mutation in the conserved DNA-binding region, that exhibited normal activity. The equivalent mutation in MAFB did not retain normal activity. Therefore, the researchers searched for structural differences between the MAFA and MAFB proteins outside of the DNA-binding region that might also contribute to its activity. Their AlphaFold 2 models showed that the two proteins differed in the C-terminal domains. The researchers created chimeras by exchanging the two C-terminal domains of MAFA and MAFB, which changed how each protein regulated the insulin gene. These results help clarify differences between MAFA and MAFB, which of their domains affect activity and possible ways that they contribute to different disease states.

Future studies will focus on regions of MAFA and MAFB that may interact with other coregulators of the insulin gene.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Isabel Casas

Isabel Casas is the ASBMB’s publications director.

Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Scientists identify pan-cancer biomarkers
Journal News

Scientists identify pan-cancer biomarkers

April 30, 2025

Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Journal News

New mass spectrometry tool accurately identifies bacteria

April 30, 2025

Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Journal News

New tool matches microbial and metabolic metaproteomic data

April 30, 2025

Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Interview

Meet Paul Shapiro

April 29, 2025

Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.

CRISPR epigenome editor offers potential gene therapies
News

CRISPR epigenome editor offers potential gene therapies

April 25, 2025

Scientists from the University of California, Berkeley, created a system to modify the methylation patterns in neurons. They presented their findings at ASBMB 2025.

Finding a symphony among complex molecules
Profile

Finding a symphony among complex molecules

April 23, 2025

MOSAIC scholar Stanna Dorn uses total synthesis to recreate rare bacterial natural products with potential therapeutic applications.