Journal News

How Salmonella runs hot and cold

Elizabeth Stivison
Feb. 7, 2023

“Don’t eat raw cookie dough!” is something adults often say to children. One reason we wash vegetables, cook meat and — usually — don’t eat raw cookie dough is to avoid getting infected with pathogens like Salmonella. 

As familiar as the name of this bacteria is, there’s quite a bit we don’t know about how it grows and spreads. One thing complicating our understanding is that Salmonella survives in disparate conditions. We have a handle on its life when it gets into our bodies, but it also must survive on crops in cooler outdoor temperatures and even in the fridge.

Researchers in Osnabrück, Germany, recently published a study in the journal Molecular & Cellular Proteomics about how the Salmonella proteome changes under different temperatures and nutrient conditions, opening the door to developing more efficient prevention techniques. 

To understand how Salmonella survives, they grew it at temperatures from about as cold as a refrigerator up to as warm as a human body. They also varied the available nutrients. Then, after monitoring growth rate and other factors, they collected samples from all the growth conditions, extracted the proteins and analyzed them by mass spectrometry to get a picture of each one’s entire proteome. 

They found tons of data, which they’ve made available for other researchers, and started characterizing it with broad strokes. More pathogenic factors were expressed at body temperature. Heat and cold stress response proteins changed across the conditions, as did proteins regulating gene expression and metabolism: Glycolysis enzymes are less abundant at colder temperatures, so the Salmonella may be upregulating their citric acid cycle to compensate. 

When looking at the proteomic data for the cooler temperatures, they made unexpected finds, according to first author Laura Elpers. “It was a surprise to identify flagella,” the long thin structures bacteria use like a propeller for locomotion, she said.

In E. coli, another common foodborne pathogen, flagella are expressed only at body temperature, not colder temperatures, and researchers thought it would be the same for Salmonella. “At first I thought, ‘that cannot be,”’ Elpers said. “I thought the proteomics was messed up, so we checked them.”

Elpers stained her cells grown in cooler temperatures for flagella proteins and looked under a 100x microscope. “I was quite excited when I did the staining and could see the flagella,” she said.

The team plans to look further into the flagella — it appears that they may be structured differently at cooler temperatures than at body temperature and may move differently. At body temperature, the team could see the Salmonella swimming around quickly, while at cooler temperatures the bacteria creep and crawl slowly. 

“What is the flagella doing at the lower temperature?” asked Michael Hensel, the lead author. “The temperature is similar to conditions in agriculture — prior to climate change. It’s a bacterial pathogen that hasn’t been considered to be motile at that temp. But it may actually be able to reach new hosts and spread.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Elizabeth Stivison

Elizabeth Stivison is a postdoctoral researcher at Vanderbilt University studying inositol signaling and a careers columnist for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Cows offer clues to treat human infertility
Journal News

Cows offer clues to treat human infertility

April 23, 2024

Decoding the bovine reproductive cycle may help increase the success of human IVF treatments.

Immune cells can adapt to invading pathogens
News

Immune cells can adapt to invading pathogens

April 20, 2024

A team of bioengineers studies how T cells decide whether to fight now or prepare for the next battle.

Hinton lab maps structure of mitochondria at different life stages
Member News

Hinton lab maps structure of mitochondria at different life stages

April 20, 2024

An international team determines the differences in the 3D morphology of mitochondria and cristae, their inner membrane folds, in brown adipose tissue.

National Academies propose initiative to sequence all RNA molecules
News

National Academies propose initiative to sequence all RNA molecules

April 19, 2024

Unlocking the epitranscriptome could transform health, medicine, agriculture, energy and national security.

From the journals: JLR
Journal News

From the journals: JLR

April 19, 2024

What can you do with artificial lipoproteins? A new key to angiogenesis. Flavonoids counteract oxidative stress. Read about recent papers on these topics.

Iron could be key to treating a global parasitic disease
Journal News

Iron could be key to treating a global parasitic disease

April 16, 2024

A study has found that leishmaniasis causes body-wide changes in iron balance, leading to red blood cell damage.