Journal News

Rethinking how culture medium contributes to cellular function

Isha Dey
Jan. 4, 2022

Cell culture medium, as we know, contains a combination of growth factors and other components that help researchers grow cells in the lab. An important constituent in the growth medium is serum, an animal-derived complex of growth factors, amino acids and lipids, which provides nutrition to the growing cells. Researchers lack complete information on serum composition and its lot-to-lot variability but have studied the effects of some growth medium components on cellular metabolism. However, they do not yet understand fully the impact of the medium’s lipid content on cell function.

The powerhouse of human cells is mitochondria. An important component that determines mitochondrial function is cardiolipins, or CLs. These phospholipids located on the inner mitochondrial membrane are involved in mitochondrial bioenergetics and maintaining architecture of the mitochondrial membranes as well as in scavenging reactive oxygen species. However, cardiolipin composition is different in different tissues of the body, and because CLs play a central role in mitochondrial function, this means cells in different organs have varied mitochondrial activity.

To better understand the effect of nutrition, especially lipids, on mitochondrial CL composition and function, Markus Keller’s lab at the Medical University of Innsbruck in Austria cultured mammalian cells in lipid-free medium and then fed them with various types of lipids. Using mass spectrometry lipidomics and mathematical modeling, the authors were able to quantify the CL composition in the presence of different fatty acids in the growth medium.

Specifically, addition of linoleic acid to the medium altered 76% of the natural CL side chain composition compared to untreated medium. Addition of alpha linolenic acid and arachidonic acid also altered CL side chain composition significantly. Moreover, linoleic acid treatment increased the activity of the mitochondrial respiratory complex I, which is responsible for generating ATP and thus regulates normal functioning of a cell. The lab’s breakthrough findings were published in the Journal of Lipid Research.

Gregor Oemer, the first author on the paper, said an initial challenge of this project was finding cells that would grow without lipids, which are usually necessary for cell proliferation. “We got Panserin 401 (a serum-free medium) from a German biotech company and luckily got our HeLa cells to grow in this lipid-free medium,” he said.

The work was a collaborative effort. “We were in luck because Innsbruck is the home base for Oroboros, one of the most renowned respirometry companies,” Oemer said, “and thanks to Erich Gnaiger, the head, we collaborated for the respirometry assays.”

This project was a continuation of Oemer’s master’s thesis from the Keller lab. “Lipid metabolism is very complex but quite fascinating, and we don’t know much about it,” he said.

What struck Oemer most was how, by just altering the lipid intake, the researchers were able to influence critical cellular functions. He hopes the work raises awareness that variations in serum in cell culture medium may alter experimental data. This is especially important while studying diseases such as Barth syndrome, a genetic disorder characterized by abnormalities in mitochondrial cardiolipins.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Isha Dey

Isha Dey is a scientist at Thermo Fisher Scientific.

Related articles

From the journals: JLR
Swarnali Roy
From the journals: JLR
Swarnali Roy
From the journals: JLR
Nivedita Uday Hegdekar
From the journals: JLR
Clementine Adeyemi
From the journals: JLR
Lisa Learman & Laurel Oldach

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.

Meet Shannon Reilly
Profile

Meet Shannon Reilly

May 12, 2025

The JLR junior associate editor discusses the role of adipocytes in obesity at Weill Cornell Medical School.

Meet Donita Brady
Interview

Meet Donita Brady

May 8, 2025

Donita Brady is an associate professor of cancer biology and an associate editor of the Journal of Biological Chemistry, who studies metalloallostery in cancer.