Annual Meeting

Study of chlorinated lipids could lead to better sepsis treatment

Adriana Bankston
March 1, 2019

After a young friend died of cancer, Daniel Pike’s interest in science developed into a path focused on both treating disease and studying it.

Daniel PikeDaniel Pike is doing research with rats to learn how chlorinated lipids might predict and mediate the severity of sepsis.

“Before he died, he talked about how he wanted his doctors to do whatever they wanted to, because what they learned would help the kids that came after him,” Pike said. “That really resonated with me and ultimately inspired me to pursue a career in biomedical research.”

As an undergraduate at Saint Louis University, Pike enjoyed biology and chemistry, he said, “with an emphasis on applications in medicine.” After earning a bachelor’s degree in biochemistry, he applied to M.D./Ph.D. programs and began his studies at the SLU School of Medicine. He spent two years in medical school and then started working in David Ford’s lab in the department of biochemistry and molecular biology.

Pike was attracted by Ford’s “good track record as a mentor, the focus on lipids and the translational aspect of the research that could be applied to a health problem.” His goal is to work in an academic hospital integrating medicine and research.

“Daniel is a bright, hard-working student,” Ford said, “and his basic science research efforts in the field of sepsis and lipid biochemistry may lead to better treatments for this ever-growing public health problem.”

One initial sticking point for Pike was working with animals, in particular with rats.

“I was never particularly nervous around handling them or anything,” he said. “It was more the practical aspects … I had never worked with animals before, so I had to learn a bunch of new techniques and figure out how to get them to work in our model.”

Outside of the lab, Pike enjoys cycling and playing trumpet in the pep band for the SLU basketball team. “This is actually my ninth year doing it,” he said, “so I’ve sort of become an old vet of the trumpet section.”

Translational research in platelet-activating factor and lipids

A major goal of the Ford lab is to understand the dynamics between bioactive lipids and sepsis. Chlorinated lipids, a species of bioactive lipids discovered by the lab, are produced through white blood cell activation.

The lab published a study in the Journal of Clinical Investigation Insight demonstrating the involvement of chlorinated lipids in sepsis. Chlorinated lipids measured in plasma samples taken from sepsis patients on the day of admission to the ICU predicted mortality 30 days out. They found that mortality was largely due to lung failure in these patients.

Additionally, chlorinated lipids can cause a pro-inflammatory change in endothelial cells. The endothelial cells display an increase in permeability, an increase in the surface expression of adherence molecules, such as P-selectin, and an increase in the release of von Willebrand factor and angiopoietin-2, both of which are involved in the endothelial inflammatory response.

Expanding upon these results, Pike is using a rat model of sepsis in the lab to better understand the role of chlorinated lipids in predicting and mediating the severity of sepsis.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Adriana Bankston

Adriana Bankston is a senior fellow in science policy at the Federation of American Scientists. She is also strategic advisor at the Journal of Science Policy and Governance.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Building the blueprint to block HIV
Profile

Building the blueprint to block HIV

Dec. 11, 2025

Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Journal News

Gut microbes hijack cancer pathway in high-fat diets

Dec. 10, 2025

Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.