Annual Meeting

Study of chlorinated lipids could lead to better sepsis treatment

Adriana Bankston
By Adriana Bankston
March 01, 2019

After a young friend died of cancer, Daniel Pike’s interest in science developed into a path focused on both treating disease and studying it.

Daniel PikeDaniel Pike is doing research with rats to learn how chlorinated lipids might predict and mediate the severity of sepsis.

“Before he died, he talked about how he wanted his doctors to do whatever they wanted to, because what they learned would help the kids that came after him,” Pike said. “That really resonated with me and ultimately inspired me to pursue a career in biomedical research.”

As an undergraduate at Saint Louis University, Pike enjoyed biology and chemistry, he said, “with an emphasis on applications in medicine.” After earning a bachelor’s degree in biochemistry, he applied to M.D./Ph.D. programs and began his studies at the SLU School of Medicine. He spent two years in medical school and then started working in David Ford’s lab in the department of biochemistry and molecular biology.

Pike was attracted by Ford’s “good track record as a mentor, the focus on lipids and the translational aspect of the research that could be applied to a health problem.” His goal is to work in an academic hospital integrating medicine and research.

“Daniel is a bright, hard-working student,” Ford said, “and his basic science research efforts in the field of sepsis and lipid biochemistry may lead to better treatments for this ever-growing public health problem.”

One initial sticking point for Pike was working with animals, in particular with rats.

“I was never particularly nervous around handling them or anything,” he said. “It was more the practical aspects … I had never worked with animals before, so I had to learn a bunch of new techniques and figure out how to get them to work in our model.”

Outside of the lab, Pike enjoys cycling and playing trumpet in the pep band for the SLU basketball team. “This is actually my ninth year doing it,” he said, “so I’ve sort of become an old vet of the trumpet section.”

Translational research in platelet-activating factor and lipids

A major goal of the Ford lab is to understand the dynamics between bioactive lipids and sepsis. Chlorinated lipids, a species of bioactive lipids discovered by the lab, are produced through white blood cell activation.

The lab published a study in the Journal of Clinical Investigation Insight demonstrating the involvement of chlorinated lipids in sepsis. Chlorinated lipids measured in plasma samples taken from sepsis patients on the day of admission to the ICU predicted mortality 30 days out. They found that mortality was largely due to lung failure in these patients.

Additionally, chlorinated lipids can cause a pro-inflammatory change in endothelial cells. The endothelial cells display an increase in permeability, an increase in the surface expression of adherence molecules, such as P-selectin, and an increase in the release of von Willebrand factor and angiopoietin-2, both of which are involved in the endothelial inflammatory response.

Expanding upon these results, Pike is using a rat model of sepsis in the lab to better understand the role of chlorinated lipids in predicting and mediating the severity of sepsis.

Adriana Bankston
Adriana Bankston

Adriana Bankston a former bench scientist with a passion for improving training and policies for junior scientists. She is a policy and advocacy fellow at the Society for Neuroscience and a policy activist at the nonprofit organization Future of Research.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A new hotspot for cyclooxygenase inhibition
Lipid News

A new hotspot
for cyclooxygenase inhibition

January 21, 2020

Drugs like aspirin dampen inflammation by inhibiting certain enzymes, but can have nasty gastrointestinal side effects so enzymologists are investigating the structure of the enzymes’ active sites in hopes of designing more selective inhibitors.

Your blood type may influence your vulnerability to the winter vomiting virus

Your blood type may influence
your vulnerability to the winter
vomiting virus

January 19, 2020

Norovirus is very infectious, but not everyone is equally vulnerable. Whether you get sick or not may depend on your blood type.

The proteome of the cave bear
Journal News

The proteome of the cave bear

January 18, 2020

If a peptide mass spectrum is like a jigsaw puzzle, then a genome is the picture that researchers use to piece things together. But what do you do when there’s no picture to use as a guide?

Pulse points: 2020

Pulse points: 2020

January 16, 2020

Research can spark change. Here are examples of how scientific inquiry exposes health risks and leads to new treatments for disease.

JLR junior associate editors organize virtual issues
Journal News

JLR junior associate editors organize virtual issues

January 14, 2020

The junior associate editors of the Journal of Lipid Research have organized four virtual issues highlighting cutting-edge research published by the journal.

Taking the measure of glycans
Journal News

Taking the measure of glycans

January 12, 2020

When Lorna De Leoz invited laboratories to participate in her glycomics study, she hoped for 20 responses. Instead, she was deluged by emails from around the world.