Journal News

Disrupting a channel to regulate depression

Chloe Kirk
Dec. 21, 2022

Major depressive disorder, or MDD, affects 17% of adults in the U.S. Even with treatment, many patients experience refractory symptoms and may experiment with multiple medications to find a pharmacotherapy that works. Even effective therapies can be hindered by side effects such as changes in weight and sleeping habits. 

Nearly all existing antidepressants target neurotransmitters such as serotonin. However, a recent breakthrough in a Vanderbilt University Medical Center lab regulates protein–protein interactions in the brain and could offer one new path to treatment. 

Stock photo of pills, capsules and pill bottles
 

Dane Chetkovich’s lab has long been interested in MDD and how it can be treated by targeting ion channels in the hippocampus. Ye Han, a research associate professor in the lab, and colleagues recently published a paper in the Journal of Biological Chemistry announcing the discovery of a small molecule capable of disrupting a key pathway in the brain linked to the disorder.

Researchers in the lab had found previously that hyperpolarization-activated, cyclic nucleotide-gated — or HCN — channels are elevated in people with MDD as well as in animals that have been genetically altered to experience chronic social stress. This was an important breakthrough in understanding the disorder and provided a molecular target for developing new therapies. However, HCN channels are present in both the heart and the brain, and compounds designed to limit HCN channel function can produce heart arrhythmias.

“We know HCN is the therapeutic target, but we needed a way to exclusively target these channels in the brain,” Han said. “We need to be able to target HCN indirectly.”

As far back as 2010, Han and Chetkovich were studying a supporting subunit of HCN channels that can regulate HCN channel activity specifically in the brain. This subunit is called tetratricopeptide-repeat containing, Rab8b-interacting protein, or TRIP8b. It binds to HCN pore-forming subunits to regulate HCN channel function and subcellular distribution. 

TRIP8b turned out to be the key to unlocking HCN channel regulation in MDD. When TRIP8b is knocked out in the brains of animals, HCN channel expression decreases. 

Han took this discovery a step further in the work described in this recent JBC paper, using a high-throughput virtual screen to identify a small molecule, NUCC-0200590, that can disrupt the HCN–TRIP8b interaction both in the test tube and in animals. 

The lab now is working on developing this small molecule into a drug that could be used in the clinic. This means screening to test analogs and concentrations for their effect on the HCN–TRIP8b interaction to improve potency and stability, with the long-term goal of bringing it to a clinical trial.

“This novel approach takes advantage of a specific mechanism found only in the brain and has the potential to improve how MDD is treated,” Han said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.