Journal News

JBC: A plant immune system
corrects its course

Researchers link virus sensing with gene expression
Sasha Mushegian
December 01, 2018

Plant immune systems, like those of humans and animals, face a difficult balancing act: They must mount responses against ever-evolving pathogens, but they must not overdo it. Immune responses require energy and resources and often involve plants killing their own infected cells to prevent the pathogens from spreading.

Potato plantResearchers at labs in the UK and the Netherlands studied a receptor protein found in potato plants like this one that detects infection by a virus called potato virus X.Scott Bauer/USDA

Researchers at Durham University in England have identified a crucial link in the process by which plants regulate their anti-viral responses. The research was published in the Journal of Biological Chemistry.

Martin Cann’s lab at Durham, in collaboration with the laboratories of Aska Goverse at Wageningen University and Frank Takken at the University of Amsterdam, studied a receptor protein called Rx1, which is found in potato plants and detects infection by a virus called potato virus X.

Binding to a protein from the virus activates Rx1 and starts a chain of events that results in the plant mounting an immune response. But the exact sequence of cellular events — and how Rx1 activation was translated into action by the rest of the cell — was unknown.

“Our study revealed an exciting, and unexpected, link between pathogen attack and plant DNA,” Cann said.

Specifically, the study showed that Rx1 joins forces with a protein called Glk1. Glk1 is a transcription factor, meaning it binds to specific regions of DNA and activates genes involved in cell death and other plant immune responses. The team found that when Glk1 bound to virus-activated Rx1, it was able to turn on the appropriate defense genes.

When the viral protein was absent, Rx1 seemed to have the opposite effect — actually keeping Glk1 from binding to DNA. In this way, it prevented an inappropriate immune response.

“The immune response involves reprogramming the entire cell and also often the entire plant,” Cann said. “An important part of this regulatory process is not only allowing activation but also making sure the entire system is switched off in the absence of infection.”

More than one-third of the potential global crop harvest is lost to pathogens and pests each year, so breeding plants with better immune systems is an important challenge. Understanding how this immune system is regulated at the appropriate level of activity gives the researchers more ideas of points in the immune signaling pathway that could be targeted to increase the plant’s baseline ability to resist disease.

“To increase (crop) yield, there is an urgent need for new varieties that are resilient to these stresses,” Cann said. “A mechanistic understanding of how plants resist or overcome pathogen attack is crucial to develop new strategies for crop protection.”

Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare
News

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare

September 27, 2020

Nicholas McCarty of New York University writes that genetically engineering drug users’ brains is short-sighted, reactive and unnecessary.

Lessons from how the polio vaccine
News

Lessons from how the polio vaccine

September 26, 2020

Despite the polio vaccine’s long-term success, manufacturers, government leaders and the nonprofit that funded the vaccine’s development made several missteps.

From the journals: MCP
Journal News

From the journals: MCP

September 25, 2020

How marine iguanas mark their turf. A new way to study Parkinson’s disease. Glycosylation in influenza A. Read about recent papers on these topics in the journal Molecular & Cellular Proteomics.

Gut microbiome shaped by dietary sphingolipids
Journal News

Gut microbiome shaped by dietary sphingolipids

September 22, 2020

A new tracing method described in the Journal of Lipid Research offers clues on how a macronutrient interacts with the microbes that live inside us.

From the journals: JBC
Journal News

From the journals: JBC

September 21, 2020

Proteases that fire up the flu. A sulfate pocket to take out MRSA. Proteins that prompt cancer protrusions. Read about recent papers on these topics and more.

AeroNabs promise powerful, inhalable protection against COVID-19
News

AeroNabs promise powerful, inhalable protection against COVID-19

September 20, 2020

As the world awaits vaccines to bring the COVID-19 pandemic under control, UC San Francisco scientists have devised a novel approach to halting the spread of SARS-CoV-2, the virus that causes the disease.