Lipid News

‘Fatty retina’: A root cause of vision loss in diabetes?

Clay Semenkovich Rithwick Rajagopal
By Clay Semenkovich and Rithwick Rajagopal
Nov. 25, 2021

Vision loss in diabetes, one of the most feared complications of this disease, is caused by a progressive pathogenic process known as diabetic retinopathy, or DR. Elevated blood glucose is the predominant risk factor for DR, so many people believe that glucose toxicity is the major contributor to the development of this disease. Yet, to date, no pharmaceuticals specifically targeting glucose-dependent pathways exist for DR.

Diabetic-retinopathy-445x336.jpg
Diabetic retinopathy, shown here, causes vision loss in patients with diabetes.

Diabetes is a disease of broadly disordered metabolism that affects how cells handle lipids, amino acids and signaling networks that regulate growth and proliferation — in addition to its impact on glucose. Accordingly, abnormalities of lipid metabolism are common in diabetes. For example, patients with diabetes often suffer from nonalcoholic fatty liver disease, which is characterized by chronic positive energy balance causing increased lipid synthesis and elevated levels of hepatic triglycerides. Thus, we reasoned that the retina might switch its lipid metabolic programming in response to an abundance of fuel in diabetes.

To test this possibility, our group studied the pathways that govern retinal lipid biogenesis (the process of synthesizing fatty acids from small precursors) during experimental diabetes in mice. In multiple models of diabetes, we observed a roughly 70% increase over controls in the synthesis of retinal palmitate — a ubiquitous saturated fatty acid that forms a basic building block for many lipids. This shift in lipid production was likely due to elevated glucose alone, as isolated retinal tissue exposed to high glucose showed the same increase in palmitate production.

Lipid-news-figure-890x895.jpg
Courtesy of Rithwick Rajagopal

Mechanistically, high glucose levels increased enzymatic activity of two regulatory enzymes: acetyl Co-A carboxylase and fatty acid synthase, or FAS. Mice with partial FAS loss-of-function in rod photoreceptors — the predominant cell type of the retina — were spared from vision loss due to diabetes even though they developed severe systemic metabolic disease on par with control mice. Conversely, mice with FAS gain-of-function developed vision loss in half the time as wild-type mice after induction of diabetes. Taken together, our results implicate increased retinal FAS activity and elevated palmitate as root causes of vision loss in diabetes.

The mechanisms for palmitate toxicity in the retina remain elusive. Unlike in the liver, the diabetic retina does not develop intracellular lipid droplets and does not possess any significant triglyceride stores. Moreover, in comprehensive surveys of membrane lipids in the retina, we found only modest disease-associated changes. Instead, palmitate could elicit pathological signaling either through lipid second messengers or via lipidation of protein messengers. Our group is investigating these possibilities actively.

Our results shed some mechanistic light on a puzzling feature of human DR: Though glucose is the major risk factor for vision loss in diabetes, it only explains a fraction of the variability in disease progression. Differences among individuals in terms of their retinal lipid biosynthetic flux could account for some of the variance in glucose response.

Future pharmacotherapy to finely tune retinal lipid biogenesis in DR could offer a novel approach to the treatment of an increasingly common cause of visual disability.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Clay Semenkovich
Clay Semenkovich

Clay Semenkovich is a professor and division chief of endocrinology at Washington University in St. Louis. He studies lipid metabolism in diabetes, obesity and related disorders.

Rithwick Rajagopal
Rithwick Rajagopal

Rithwick Rajagopal is an assistant professor of ophthalmology at Washington University in St. Louis. His research focuses on abnormalities of neural metabolism as contributors to vision loss in diabetes.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Neurodegenerative disease linked to microtubules
Journal News

Neurodegenerative disease linked to microtubules

Jan. 26, 2023

A team at McGill University reports a new role for sacsin, the protein mutated in a rare hereditary ataxia.

JLR session spotlights junior associate editors
Annual Meeting

JLR session spotlights junior associate editors

Jan. 24, 2023

Michael Airola, Luke Engelking and Renate Schreiber will share their research in a session titled “Into the Lipidome: Spotlight on the Journal of Lipid Research Junior Associate Editors.”

Engelking seeks to balance research and medicine
Annual Meeting

Engelking seeks to balance research and medicine

Jan. 19, 2023

Luke Engelking, a Journal of Lipid Research junior associate editor, will discuss his work during the JLR Spotlight Session at Discover BMB 2023.

Schreiber chanced upon a safe harbor in science
Annual Meeting

Schreiber chanced upon a safe harbor in science

Jan. 18, 2023

Renate Schreiber, a Journal of Lipid Research junior associate editor, will discuss her work during the JLR Spotlight Session at Discover BMB 2023.

Airola seeks the secrets of lipid-modifying enzymes
Annual Meeting

Airola seeks the secrets of lipid-modifying enzymes

Jan. 18, 2023

Michael Airola, a Journal of Lipid Research junior associate editor, will discuss his work during the JLR Spotlight Session at Discover BMB.

From the journals: MCP
Journal News

From the journals: MCP

Jan. 13, 2023

Why are two cancer drugs better than one? The glycome’s role in a malignancy. Where immunopeptidomics is going. Read about articles on these topics recently published in the journal Molecular & Cellular Proteomics.