Journal News

A new way to target mosquito-borne viruses

Chloe Kirk
Nov. 16, 2022

Dengue and Zika are two mosquito-borne viruses that have evaded effective vaccine development for decades. Affecting approximately 400 million people annually, they are members of the Flaviviridae family, a group of RNA viruses that are closely related in structure.

While a handful of approved vaccines exist for certain flaviviruses in humans, including the dengue vaccine Dengvaxia, there is still significant room to improve the safety and efficacy of these vaccines, most of which show poor efficacy in animal studies and waning immunity in humans. The traditional approach uses a live-attenuated, or weakened, form of the virus that causes a disease to make the corresponding vaccine. Replication production has been a major challenge in vaccine development for flaviviruses, as live-attenuated virus vaccines have difficulty replicating evenly.

Thanh Phan and Matthew Hvasta, Ph.D. students in Brian Kuhlman’s lab at the University of North Carolina at Chapel Hill, set out to improve dengue and Zika vaccines. Instead of the traditional live-attenuated virus approach, they used small sections, or subunits, of the virus as a way for the vaccine to recognize and target the virus. In a recent paper in the Journal of Biological Chemistry, the team writes about the development of this subunit vaccine, which Phan and Hvasta describe as “putting two Tetris pieces together and having them fit as tightly as possible.”

Their research has led the two to use a soluble version of the envelope proteins, or sE, on the surface of the dengue and Zika viruses as candidates for vaccine antigens. For sE proteins to be a viable subunit vaccine, they must be easy to produce and maintain stability in the correct conformation.

Previous work in the Kuhlman lab also took this divergent vaccine approach by identifying specific dengue mutations to stabilize sE proteins for dengue serotype DENV2, which significantly raised expression yields. Phan and Hvasta used this information to test the same mutations of Zika and the remaining dengue serotypes (DENV1, 3 and 4) by searching for and mutating similar residues as those mutated for DENV2. They found increased stability as well as a fourfold to 250-fold increase in production yields.

Creating a stable, high-expression sE protein opens the door for improved dengue and Zika vaccines as well as the potential to target other viruses in the Flaviviridae family, such as yellow fever. The next steps for this project are to perform mouse studies and measure the immune response to these sE proteins.

“Our goal is to develop a safe vaccine for dengue viruses, which will directly affect countries in the (sub)tropical areas of the world where dengue is endemic,” Phan and Hvasta wrote in an email. “A safe dengue vaccine will allow these nations to reallocate funds from what would usually be used to treat dengue to hopefully being able to treat other health care necessities.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Predicting PROTAC properties
Feature

Predicting PROTAC properties

Dec. 8, 2022

Best of BMB 2022: Proteolysis-targeting chimeras bring together a drug target protein and a ubiquitin ligase to remove the target from the cell. But sometimes the process stalls out.

Cataloging itty-bitty proteins in large numbers
Feature

Cataloging itty-bitty proteins in large numbers

Dec. 7, 2022

Best of BMB 2022: Ribosome profiling has identified thousands of short protein-coding genes, many in unexpected parts of the genome. Research suggests some play important regulatory roles.

Giant, intricate structures
Feature

Giant, intricate structures

Dec. 6, 2022

Best of BMB 2022: In a “triumph of experimental structural biology,” multiple teams tackle the nuclear pore complex.

Evolutionary constraints on disordered proteins
Feature

Evolutionary constraints on disordered proteins

Dec. 5, 2022

Best of BMB 2022: “There’s evidence that there must be conservation of function — so how does this happen, if the sequence changes so much?”

COVID-19, preprints and journalists
Science Communication

COVID-19, preprints and journalists

Dec. 3, 2022

Researchers find that news stories often fail to mention when studies haven’t been peer reviewed.

From the journals: MCP
Journal News

From the journals: MCP

Dec. 2, 2022

Muscling in on a signaling pathway. Probing weaknesses in the T cell surface. Improving single-cell proteomics two ways. Read about papers on these topics recently published in the journal Molecular & Cellular Proteomics.