Journal News

From the journals: MCP

Latavia Hill
Sept. 25, 2020

We offer summaries of recent papers from the journal Molecular & Cellular Proteomics. Topics include how marine iguanas mark their turf, a new way to study Parkinson’s disease and glycosylation in influenza A.

 

Immune function of femoral glands in marine iguanas

Femoral glands play a key role in chemical signaling in many lizards and amphibian species, including marine iguanas. Male iguanas secrete substances from their femoral glands to attract female mates, and researchers hypothesize that certain lipids in these secretions aid in territory marking and male quality communication. Recently, Fredrick Tellkamp, Franziska Lan and a team of German researchers published a paper in the journal Molecular & Cellular Proteomics that focused on identifying the function and identity of proteins found in femoral gland secretions using a comprehensive proteomic approach.

The researchers developed the first transcriptome data set and used this information to identify various phospholipase isoforms in marine iguanas. They used prediction software to characterize unidentifiable proteins and learned that two of the 15 candidates were enriched in femoral gland secretions. Next, they used several biochemical methods, including mass spectrometry analysis, to characterize these compounds further. This analysis revealed several thousand hits, and further experimentation identified epidermis-specific proteins, lipid-binding proteins and immune-responsive proteins.

The work also yielded femoral gland proteins that have antimicrobial properties. This finding led to the generation of a library of antimicrobial peptides, and the researchers selected 17 AMPs for analysis. Of these 17 AMPs, peptide 4 showed strong antimicrobial effects againstE. coli and Bacillus subtilisin growth rate reduction experiments. The researchers speculate that AMPs and immune cells in femoral gland secretions provide protection against bacterial infection and degradation when the femoral gland opens during male iguana territory marking, which is crucial to survival.

Iguana-800x600.jpg
Helene Hoffman
Male iguanas secrete substances from their femoral glands to attract female mates.

A new way to study Parkinson’s

Parkinson’s disease is a progressive, neurodegenerative disorder that causes involuntary loss of control over some body functions. The causative agents of some Parkinson’s cases are mutations in the leucine-rich repeat kinase 2, or LRRK2. These changes lead to increased kinase activity, which enhances the phosphorylation of an important protein known as Rab10 involved in disease manifestation. Recent work published in the journal Molecular & Cellular Proteomics by Ozge Karayel of the Max Planck Institute of Biochemistry and an international team focused on determining the stoichiometry of Rab10-Thr73 in Parkinson’s patient samples.

The researchers developed a highly sensitive, mass spectrometry–based assay, mxSIM, to show that Rab10 phosphorylation is a direct readout for LRKK2 activity. Using mxSIM coupled with in-gel digestion, the researchers detected small differences in LRRK2 activity in mouse fibroblast cells. Next, they tested Rab10 levels before and after LRRK2 inhibition in both human peripheral blood and Parkinson’s patients and found increased Rab10-Thr73 phosphorylation levels in the patients as compared to healthy controls. Overall, this work provides new knowledge about the role of Rab10-Thr73 in LRRK2-associated Parkinson’s. Furthermore, these findings can aid the development of new medications that will treat disease progression, not just the symptoms. Lastly, the mxSIM technology can be used to study other diseases.

Measuring glycosylation in influenza A

Influenza A is an RNA virus that affects birds and mammals. Strains of this virus caused the 1918 Spanish flu pandemic and the more recent 2009 H1N1 swine flu outbreak. This virus has a high mutation rate, which ultimately helps it to evade the host immune response. This is why researchers create new flu vaccines annually. Influenza vaccine development takes advantage of antigenicity of the influenza A envelope protein hemagglutinin, or HA, and its glycosylation state.

Recent work published in the journal Molecular & Cellular Proteomics focused on determining if there is a difference in glycosylation at the protein level in two related influenza strains, using a statistics-based approach. Deborah Chang of Boston University and a team of U.S. researchers used the Tanimoto similarity metric and determined the hemagglutinin glycosylation similarities for the wild-type SWZ13 strain versus a SW13 mutant. The mutant strain contained the same sequons as the wild type, but at the whole glycoprotein level the two strains were measurably distinct in glycosylation due to alteration of head group glycosylation. The researchers concluded that the Tanimoto similarity metric is useful for determining alterations in glycoprotein glycosylation from bottom-up glycoproteomics data.  This work will aid future vaccine production.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Latavia Hill

Latavia Hill is a graduate student studying microbiology at the University of Kansas.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Biobots arise from the cells of dead organisms
News

Biobots arise from the cells of dead organisms

Oct. 27, 2024

Given the right conditions, certain types of cells are able to self-assemble into new lifeforms after the organism they were once part of has died.

The shape of molecules to come
News

The shape of molecules to come

Oct. 26, 2024

Researchers explore unique properties of a nanostructure called “switchback DNA” that could have implications in nature and in biomedicine.

From the journals: JBC
Journal News

From the journals: JBC

Oct. 25, 2024

Lyme disease pathogen evades host immunity. Transporters unite to assist cancer cells. How a fungal pore protein assembles. Read about these recent JBC papers.

How do diet and lipoprotein levels affect heart health
Journal News

How do diet and lipoprotein levels affect heart health

Oct. 23, 2024

Analysis of a dietary study shows that lipid profiling may prove beneficial — and healthy dietary intervention may reduce risk.

We are family: Tracing the evolution of animals
News

We are family: Tracing the evolution of animals

Oct. 20, 2024

To understand the origins of muticelled life, researchers are studying a motley assortment of simpler animal relatives. The commonalities they’re unearthing offer a trove of clues about our mutual past.

3D shapes of viral proteins point to previously unknown roles
News

3D shapes of viral proteins point to previously unknown roles

Oct. 19, 2024

A research team led by Jennifer Doudna has harnessed computational and deep-learning tools to predict the shapes of nearly 4,500 species that infect animals and humans.