Journal News

Seeking the sweet spot to beat a pig parasite

Senegal Carty
By Senegal Carty
July 16, 2024

Outbreaks of the nematode Trichuris suis, also known as porcine whipworm, can be costly for pig farmers and inflict suffering on animals with severe infections. This worm reproduces in pigs’ digestive tracts, causing dehydration, malnourishment and sometimes death. Understanding how a pig's immune system reacts to T. suis is an important step toward developing better strategies for helping animals to clear it.

Iain B.H. Wilson’s lab at the Universität für Bodenkultur in Vienna, in collaboration with Richard Cummings’ lab at Harvard Medical School, tackled the question of how the pig immune system recognizes sugar molecules, or glycans, found on T. suis proteins. The group recently reported their findings in the journal Molecular & Cellular Proteomics. Lead author Barbara Eckmair, along with co-author Katharina Paschinger and Wilson walked us through their process, their findings and the importance of this study.

Organically farmed pigs are at especially high risk of whipworm infection. New research into their immune responses to sugars made by this parasite could help scientists develop vaccines against it.
Organically farmed pigs are at especially high risk of whipworm infection. New research into their immune responses to sugars made by this parasite could help scientists develop vaccines against it.

The group extracted glycans from worms and then separated different types of glycans using high-performance liquid chromatography, a technique that isolates compounds within a mixture based on how easily they separate due to their size and structure. They then created arrays of spots made up of the separated glycans. Using these arrays, they tested several innate immune system proteins, as well as immunoglobulin G and M, or IgG and IgM, antibodiesfrom T. suis–infected pigs, to see how well they bound to each glycan spot.

“Some large molecular-weight glycans seemed to have the bulk of the response to the antisera,” Wilson said. “So that left the question as to what the exact structures were.”

They found that many fucose residues were common, as well as a zwitterion called phosphorylcholine, and up to eight phosphorylcholine residues could decorate some of the glycans.

“Lots of other nematodes have phosphorylcholine on their N-glycans,” he said, “and these are very often associated with immune system downregulation.”

However, this was the first time such large structures had been found in T. suis.

Wilson said this research is especially impactful for organic farming because animals raised this way receive fewer antiparasitic drugs and are at higher risk of worm infections. Earlier studies suggest that vaccination against these parasites is an attractive potential strategy.

“There are indications from Haemonchus, which is a sheep parasite, that the glycans would be important for making the vaccine," Wilson said.

When asked about the next steps for this research,  co-author Paschinger said that determining which glycans are bound by IgE, an antibody that plays a key role in the immune response to parasites, is an important question to answer.

Eckmair, the paper’s lead author, explained that IgE binding could not be addressed in this study because the reagents needed to test pig IgE binding are difficult to procure, but she said future experiments could tackle this and many other questions.

“Of course, there is more immunological work that we could do, because we still have some of the arrays left,” Eckmair said. “This was really a lucky case because we have so much material that we could test.”

This research is not only a step toward understanding the pig immune response to T. suis; by helping researchers understand the immune response to glycans found in Trichuris trichiura, the human whipworm, it might lead to medical advances for humans as well.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Senegal Carty
Senegal Carty

Senegal Carty recently graduated from Boston University Chobanian and Avedisian School of Medicine with a Ph.D. in molecular and translational medicine. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.