Lobsters hold the secret of a long, cancer-free life in their genes
The American lobster — easily recognizable by its two hefty claws — can reach the impressive age of 100 years. The remarkable longevity is accompanied by very few signs of aging; it continuously grows and reproduces throughout its life and does not suffer from age-related diseases such as cancer. This exceptional resilience has garnered interest from researchers that are curious to decipher the reasons behind the lobster’s longevity and good health.
Could the genome of the American lobster provide clues about their healthy aging? Researchers at the Gloucester Marine Genomics Institute have recently published the first draft of the American lobster genome, which revealed surprising, first insights into the animal’s unique resilience mechanisms. Their work was published in the journal Science Advances.
The researchers found genes encoding for a novel class of proteins that combine both neuronal and immune-related functions. By coupling the neural and immune system, the lobster could fight off pathogens more efficiently.
The researchers also surveyed the lobster genome for genes involved in safeguarding the genome. These safeguards prevent genomic alterations and mutations, which is crucial for longevity and warding off cancer. The researchers found that the American lobster has an extended repertoire of genes encoding for proteins that silence certain regions of the genome. These regions need to be silenced to prevent potentially disease-causing mutations such as chromosomal rearrangements. By ensuring that these regions remain silenced, the American lobster safeguards its genome throughout its long life.
With the newly deciphered lobster genome as a starting point, future research will provide further insight into the healthy aging strategies of the American lobster. More than a mere delicacy, the humble lobster could teach us a lot about healthy aging.
This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.