Lipid News

Who’s in charge of PM identity?

Gerry Hammond
By Gerry Hammond
September 01, 2018

The plasma membrane, or PM, is the front line of cellular life. It functions simultaneously as a border, logistical hub, communications relay and structural foundation. These functions are performed by proteins embedded in or attached to the PM. Typically, these proteins are controlled from the cytosolic face of the PM, enabling the cell to maintain executive control of PM function and adapt it as necessary.

The plasma membrane stands apart from other membranes at least in part because of its enrichment in anionic lipids (inset), making it uniquely highly negatively charged.Courtesy of Gerry Hammond

Controlling these PM proteins poses a unique challenge in eukaryotes; the proteins must be targeted correctly and activated at the PM and not at the many other membrane organelles connected by vesicular traffic. For example, a calcium channel should not become activated after synthesis in the endoplasmic reticulum, nor should machinery tasked with pulling vesicles from the PM pull them from endosomes instead. In short, the PM needs a unique chemical identity that proteins can recognize.

We now know that lipids are critical to PM identity. In fact, the cytosolic face of the PM is uniquely enriched in anionic lipids, making the inner leaflet of the PM a distinct, negatively charged electrostatic platform. This attracts peripheral proteins with amphipathic domains, such as small GTPases and protein kinases. It also facilitates activation of membrane proteins, such as channels and transporters, as they arrive at the PM. This electrostatic code appears conserved across the kingdoms of Eukarya, though the lipids involved differ. Phosphatidylserine, or PS, is crucial in all kingdoms but is augmented by other anionic lipids, especially the phosphoinositides — highly charged phospho-derivatives of the anionic lipid phosphatidylinositol, or PI. In animals, the enrichment of PS together with phosphoinositides PIP2 and PI4P is central to PM identity. In plants, PS is instead augmented by PI4P and phosphatidic acid.

Electrostatics play a role in identifying membranes elsewhere in the endocytic network, with decreasing concentrations of anionic lipid the further into the system we venture from the PM. The big question is, How is this gradient of anionic lipids built and maintained?

Fundamental mechanisms are still debated. For example, the extent to which vesicular traffic helps or hinders is not clear. On the one hand, selective sorting of lipids into vesicular carriers could enrich packets of anionic lipid destined for the PM. Alternatively, failure to sort efficiently would instead lead to equilibration of lipids between organelles. Side-stepping vesicular traffic altogether, non-vesicular lipid transport by lipid-binding proteins is an attractive mechanism to facilitate asymmetric lipid distribution in the cell. However, researchers have questioned whether these proteins truly transport lipids from one organelle to another to build or maintain such gradients.

One class of lipid — the phosphoinositides — seems likely to be central to either mechanism. Lipid kinases and phosphatases stationed throughout the PM and endocytic network convert the phospho-configuration of PI as it shuttles between compartments by vesicular traffic, effectively modifying its charge profile. These lipids also control many of the candidate lipid transfer proteins. For example, PM PIP2 was recently shown to control the non-vesicular traffic of the other anionic PM lipids PS and PI4P, suggesting a cardinal role for this lipid in animal-cell PM identity.

While we continue to debate these mechanisms, a key component is still missing: a sensing mechanism to enable homeostatic control of PM anionic lipid content. Such a sensor would be required to activate lipid import and shut if off once the appropriate electrostatic potential is reached. What is the nature of this sensor? Perhaps it controls the abundance of a master lipid like PIP2, which in turn controls traffic of other anionic species. Or perhaps a protein senses the electrostatic potential of the inner leaflet and engages transport.

There is still much for us to learn.

Gerry Hammond
Gerry Hammond

Gerry Hammond is an assistant professor of cell biology at the University of Pittsburgh School of Medicine. His lab studies the integration of plasma membrane function by inositol lipids.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

From the journals: JBC
Journal News

From the journals: JBC

July 14, 2020

A metal ion that transforms tau. A new target to take out cancer cells. One substitution that abolishes enzyme allostery. Read about recent papers on these topics and more in the Journal of Biological Chemistry.

COVID-19 retractions show that the science is working as it should
Life in the Lab

COVID-19 retractions show that the science is working as it should

July 12, 2020

Severe scrutiny of two major papers, including one about the effectiveness of hydroxychloroquine, is part of science's normal process of self-correction, explains Mark R. O’Brian.

In the future, lab mice will live in computer chips, not cages
Life in the Lab

In the future, lab mice will live in computer chips, not cages

July 11, 2020

As COVID-19 shuttered laboratories across the U.S., many researchers were forced to euthanize the animals they study. Lindsay Gray, a rodent surgeon in an animal research lab that faced this dilemma, argues here there is a safer, more effective way.

Proteomics reveals hallmarks of aging in brain stem cells
Journal News

Proteomics reveals hallmarks of aging in brain stem cells

July 09, 2020

Early in adulthood, the brain regenerates lost myelin effectively, but remyelination falters with age. Researchers seek to understand why — and what the change may mean for people with multiple sclerosis.

Ocean virus hijacks carbon-storing bacteria
Journal News

Ocean virus hijacks carbon-storing bacteria

July 07, 2020

A Journal of Biological Chemistry paper reports that these minuscule interactions could have ripple effects on global carbon dioxide levels.

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments
News

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments

July 04, 2020

Nearly 6 million Americans live with Alzheimer’s disease without solid treatment options.