Journal News

Huntingtin through a multiomic lens

Protein–protein interaction network leads to the synapse
Laurel Oldach
August 01, 2019

Tracing the effects of a single gene’s mutation can be hard. Huntington’s disease, for example, is caused by just one mutation — but that change reverberates throughout the brain. Research published in the journal Molecular & Cellular Proteomics shows that the mutant protein that causes Huntington’s can alter the binding properties of another protein, perhaps accounting for some of the mutation’s far-flung cellular effects.

Multiomic lens

Huntington’s disease, an as-yet-untreatable neurodegenerative disorder, is caused by a mutation that affects the protein huntingtin. Huntingtin is large to begin with; in patients, a repeat region in the gene adds an expanding tract of glutamine residues to the protein, making it sticky and prone to aggregate. But how the protein change leads to profound problems in neurons is up for debate.

“Very few proteins act as a monolithic structure,” said Joel Federspiel, a postdoctoral fellow in Ileana Cristea’s lab at Princeton University. Instead, most act in coordination with other proteins. The same is probably true for huntingtin — but previous interactomics studies turned up thousands of binding partners. Which ones are important for the way the disease develops?

Recent research had shown that reducing neuronal levels of the protein HDAC4, which binds to mutated huntingtin, may reduce Huntington’s symptoms, at least in mice. Oddly, however, blocking the enzymatic activity of HDAC4, which belongs to a class of enzymes that alter histone proteins that organize DNA, did not have the same effect.

To Federspiel and Cristea, the data suggested that HDAC4 was contributing to the onset of disease through a binding interaction either with huntingtin or with other proteins. So they hopped one ripple ring away from huntingtin protein itself to study how HDAC4 changes in a brain affected by the disease.

The researchers used immunoaffinity purification followed by mass spectrometry to catalogue all of the proteins that interact with HDAC4 in the mouse brain. In a mouse model of Huntington’s, they found major changes to the HDAC4 interactome around the age at which symptoms start to appear.

“You can, in a case like this, have hundreds to thousands of proteins or transcripts that are differentially regulated,” Federspiel said. “Trying to home in on just a few of those to focus on can be challenging. However, if you have more lines of evidence, then you start to see what things are common.”

To find the significant proteins, they layered in additional data from earlier transcriptome and proteome studies. After they applied what they called a lens of multiomics, a few insights came into focus.

In the mice with huntingtin mutations that were old enough to exhibit symptoms, HDAC4 associated with many huntingtin-binding proteins — more so than in the brains of healthy mice or younger mutants.

Many of the interacting proteins were involved in the organization of synapses and vesicle transport. In the mutant mice, those proteins interact with HDAC4 much more strongly. The effect was most noticeable in cells in the striatum, a brain region that controls movement and is affected greatly in Huntington’s disease.

That’s good circumstantial evidence that, in Huntington’s-affected brains, a changing HDAC4 interactome may contribute to symptoms. Exactly how, the researchers say, remains to be determined.

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

In the future, lab mice will live in computer chips, not cages
Life in the Lab

In the future, lab mice will live in computer chips, not cages

July 11, 2020

As COVID-19 shuttered laboratories across the U.S., many researchers were forced to euthanize the animals they study. Lindsay Gray, a rodent surgeon in an animal research lab that faced this dilemma, argues here there is a safer, more effective way.

Proteomics reveals hallmarks of aging in brain stem cells
Journal News

Proteomics reveals hallmarks of aging in brain stem cells

July 09, 2020

Early in adulthood, the brain regenerates lost myelin effectively, but remyelination falters with age. Researchers seek to understand why — and what the change may mean for people with multiple sclerosis.

Ocean virus hijacks carbon-storing bacteria
Journal News

Ocean virus hijacks carbon-storing bacteria

July 07, 2020

A Journal of Biological Chemistry paper reports that these minuscule interactions could have ripple effects on global carbon dioxide levels.

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments
News

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments

July 04, 2020

Nearly 6 million Americans live with Alzheimer’s disease without solid treatment options.

Summer food science
Stroopwafels

Summer food science

July 02, 2020

For those of you bound for a summertime holiday weekend, we dug into recent research on the yummy foods you might serve at a socially distant picnic.

How lipid droplets stay in shape
Journal News

How lipid droplets stay in shape

June 30, 2020

Andrew Greenberg and colleagues discovered that the protein perilipin is involved in storage and hydrolysis of neutral lipids within these key structures in cells.