Journal News

A balancing game with implications for neurodegenerative disease

Leia Dwyer
June 8, 2021

Mitochondria in healthy cells have a stable balance of fission and fusion, the processes by which these cellular organelles divide and merge. Mitochondrial DNA is essential for their proper function, and mitochondrial fusion can help overcome genetic malfunctions and recycle proteins of nonfunctioning mitochondria in the cell. While researchers still have many questions about mitochondrial fission and fusion, we know these processes are particularly important in the brain and nerves, and recent studies suggest that mitochondrial fission and fusion are altered in several neurodegenerative diseases including Alzheimer’s.

Mitochondria-445x350.jpg

Ken Nakamura, a professor at the Gladstone Institute of Neurological Disease at the University of California, San Francisco, focuses his research on cellular mitochondrial function and association with neurological disease. In a recent paper in the Journal of Biological Chemistry, Lauren Shields, then a grad student, and a team from the Nakamura lab describe research into how mitochondrial fission is related to the toxicity of a key Alzheimer’s disease protein, amyloid-beta precursor protein, or APP. Shields, who was always interested in the neurosciences field, pushed the lab beyond its previous focus on Parkinson's disease and remembers that she was the "first graduate student to venture into Alzheimer's."

The research focused on understanding the role of dynamin-related protein 1, or Drp1, an essential mitochondrial fission protein that is increased in the brain tissue of Alzheimer’s disease patients and may be associated indirectly with metabolism of the calcium ions, or Ca2+, in the cell.

“Mitochondria are unusual organelles,” Shields said. “This all goes back to the theory of evolution that mitochondria were bacteria-like and were encompassed by cells … they’ve maintained this fission and fusion function.”

The researchers studied mice that were genetically altered to express mutant human APP, known as hAPP mice, with a targeted deletion of Drp1 that prevented fission in mitochondria. They found that the Drp1 knockout intensified the spatial learning and memory impairments observed in the hAPP mice.

Shields and the team also found that the loss of Drp1 combined with mutant hAPP to produce mitochondrial Ca2+ overload, possibly due to excessive influx of Ca2+ from the cytosol into mitochondria. They concluded that mitochondrial fission may be a protective mechanism against mitochondrial Ca2+ overload, which may be an initiating factor in the cascade of toxic insults that combine to cause neuronal dysfunction and degeneration in Alzheimer’s disease.

This work clearly shows the need for the delicate balance of mitochondrial fusion and fission in healthy cells. Because Drp1 is known to be increased in post-mortem Alzheimer’s disease patient tissue, the team originally had hypothesized that Drp1 could be a good therapeutic target. However, they concluded that Drp1 actually would be a risky target, given the need for careful calibration of the fission–fusion balance and Drp1’s protective role in Ca2+ homeostasis.

“A lot of what my time in the neurodegenerative field really underscored for me is how complex humans are, how complex the brain is and how complex neurodegenerative cascades are,” Shields said. “This is one more small piece of that big story.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Leia Dwyer

Leia Dwyer is a Boston-area biotech and pharmaceutical industry professional.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
Feature

Using 'nature’s mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
News

Cracking cancer’s code through functional connections

July 2, 2025

A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.