News

Addgene expands its collection into antibodies

The reagent repository will partner with NeuroMab
Laurel Oldach
June 4, 2021

Scientists often try to ask the same question using two or more independent approaches to reduce the chances that a conclusion could be based on an experimental artifact. Sometimes this might mean using two antibodies against the same target to show that off-target binding isn’t behind an apparent result.

According to Melina Fan, testing an antibody-based result with a second, independent antibody can be trickier than you might think. Because the same antibody is sometimes licensed to several companies, which sell it under different names and catalog numbers, researchers might believe that they’re evaluating results from two independent antibodies when in fact they are looking at the same one twice.

Thomas Deerinck/NIH Flickr
In this image of a region of the cerebellum, antibodies labeled with red and green fluorophores recognize different targets to differentiate between cell types.

The nonprofit reagent repository Addgene, of which Fan is a co-founder and chief scientific officer, is hoping to solve that problem through radical antibody openness. Addgene, known for distributing some 100,000 plasmids, including fluorescent proteins, CRISPR/Cas9 components and many other gene products, announced in May its plans to partner with NeuroMab, an academic group based in James Trimmer’s lab at the University of California, Davis, which develops antibodies for mammalian brain research.

The Addgene project, dubbed the Neuroscience AntiBody Open Resource, will support conversion of antibody genes from NeuroMab’s collection of nearly 500 hybridoma cell lines into plasmids that encode antibodies, nanobodies and related affinity reagents. Addgene will archive and distribute those plasmids and, starting in 2022, also begin to produce antibodies for sale.

In most mammals, antibodies, which comprise two protein chains, arise through specialized genetic recombination during B cell development, which produces a vast diversity of target-binding sequences. Monoclonal antibodies for research have traditionally been produced by isolating B cells from an animal immunized against a target, then immortalizing those cells to produce a cell line called a hybridoma. More recently, researchers have developed recombinant antibodies, which are encoded on a plasmid that carries both heavy and light chain genes, and can either be developed in vitro or derived from a hybridoma’s antibody genes.

Even though modern technology makes them easier to sequence and characterize, commercial antibodies are often sold in purified protein form, with sequences undisclosed. The scientific community has come to recognize over time that poor-quality antibodies can contribute to irreproducible results. To improve the reliability of research, funders and publishers have begun to request that researchers publish more detail about the tools used in their work, for example by using persistent reagent identifiers indexed with third-party databases. The new project is a further step toward open research.

Funded by the National Institutes of Health's BRAIN initiative, the Addgene effort focuses first on protein targets expressed in the mammalian brain. However, organizers hope that it will expand rapidly into other fields. Addgene already offers 486 plasmids coding for recombinant antibodies, deposited by academic and industrial labs.

“Scientists themselves believe in open science, and this is an opportunity for them to create the research environment that they want to operate in,” Fan said. “We’re hoping that scientists are going to be excited to participate in this resource.”

In response to the announcement on social media, several scientists pointed out that the NIH also funds a hybridoma collection at the University of Iowa, called the Developmental Studies Hybridoma Bank, which has about 5,000 cell lines.

Fan pointed out that since DSHB offers hybridomas, and Addgene will offer recombinant antibodies, the two resources are not in competition. Where efforts might overlap more, she added that Addgene was “open to partnerships with groups that align with our mission and philosophy.”

In general, responses to the news have been enthusiastically positive. Geneticist Neville Sanjana of New York University tweeted, “If Addgene will do for antibodies what it has done for plasmids (both in terms of quality and open sharing), this will be a real game changer.”

 
 
Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A molecular determinant of membrane protein targeting
Lipid News

A molecular determinant of membrane protein targeting

Sept. 22, 2021

A study found that a nuclear envelope-localized protein depends on cardiolipin for translocation to its target membrane.

Nautilus founder unspirals a new approach to proteomics
Feature

Nautilus founder unspirals a new approach to proteomics

Sept. 21, 2021

Parag Mallick may be trying to launch a competing proteomics technique, but you won’t catch him badmouthing mass spectrometers.

From pigeon guano to the brain
Health Observance

From pigeon guano to the brain

Sept. 20, 2021

Exploring the journey of the deadly fungal pathogen Cryptococcus neoformans (and its less widespread but still quite serious cousin C. gattii).

Deadly fungal infections
Science Communication

Deadly fungal infections

Sept. 19, 2021

For hospitalized COVID-19 patients, antimicrobial-resistant infections may be a particularly devastating risk of hospitalization.

Scientists must speak out against 'immune-boosting' supplements
Science Communication

Scientists must speak out against 'immune-boosting' supplements

Sept. 18, 2021

Supplements that claim to supercharge your T-cells, make your antibodies hum and otherwise make you invincible are all bunk, and scientists should speak out more about this misinformation.

Finding the right research path
Interview

Finding the right research path

Sept. 16, 2021

Karen Bornfeldt, an associate editor for the Journal of Lipid Research, investigates how diabetes increases cardiovascular disease risk.