Journal News

JBC: Outfitting T cell receptors for special combat

Jonathan Griffin
June 1, 2019

Researchers have engineered antibodylike T cell receptors that stick to cells infected with cytomegalovirus, or CMV, which can be deadly for patients with weakened immune systems. These receptors potentially could be used to monitor or destroy the virus and might also be able to target brain tumors.

CMV causes lifelong infection in more than half of all adults by age 40, but the virus lies dormant in most. T cells normally circulate through the body and use their membrane-bound T cell receptors, or TCRs, to detect disease-associated proteins hiding inside infected cells. TCRs then can instruct T cells to destroy the infection. For immunocompromised patients, however, this defense mechanism is diminished, leaving them vulnerable to the virus.

Researchers have used T cells to treat disease before, but engineering and transplanting whole T cells is costly and invasive. In a study published in the Journal of Biological Chemistry, a team of researchers took an alternative approach, producing CMV-detecting TCRs that float freely in the body and bind tightly to their diseased targets.

“Right now, we’ve got a molecule that looks like an antibody but it binds to a (CMV-associated) peptide that would normally be recognized by a TCR,” said Jennifer Maynard, a professor of chemical engineering at the University of Texas at Austin and senior author of the study. “Antibodies cannot normally access these molecules, so that’s a big deal.”

Researchers frequently use bacterial or yeast cells as miniature biomolecule factories, but their nonmammalian molecular machinery often introduces defects in human TCRs, Maynard said. To provide a more suitable environment, the authors used hamster ovary cells to produce the receptors.

New hybrid proteinThis new hybrid protein combines the cell targeting properties of a TCR with the tight binding and free-floating nature of an antibody to create a new molecule able to tag CMV-infected cells specifically. jennifer maynard, ellen wagner/university of texasTCRs naturally bond loosely with their targets, but the authors wanted theirs to bind and not let go. To strengthen these connections, the authors randomly mutated the DNA of the TCR component that detects the CMV peptide. They inserted many versions of the mutated DNA into the hamster cells, which then manufactured about a million types of TCR, Maynard said.

The researchers measured bonding strength by exposing those myriad TCR variations to the CMV peptide.

“We found one that was our favorite,” Maynard said. “We improved the binding affinity 50-fold.”

To liberate the TCRs from the T cell membrane, the researchers further edited the DNA so the TCRs would attach to the protein stem of Y-shaped antibodies. And to help these proteins hold their shape, they added a bond inside the TCR and prevented sugars from attaching.

These new TCRs could track disease progression in patients or evaluate new vaccines. They also might restore immune response in patients by instructing their cells to attack CMV infections, Maynard said.

This new molecule could be effective in treating glioblastoma as well. Although these brain tumors do not produce many distinct markers, they do suppress the immune system, which in CMV-infected patients can bring the virus back to life in tumors, Maynard said.

“Our protein could be used to specifically target glioblastoma cells, and it would provide a very unique marker,” Maynard said. “We would use this to monitor or kill some of those tumor cells.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Jonathan Griffin

Jonathan Griffin is a science communicator for all ASBMB journals. Follow him on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Molecular basis for interaction between an essential protein complex and its regulator
News

Molecular basis for interaction between an essential protein complex and its regulator

June 4, 2023

Mutations in COPI are associated with multiple human diseases, including cancers and microcephalies.

UTSW researchers discover how food-poisoning bacteria infect the intestines
News

UTSW researchers discover how food-poisoning bacteria infect the intestines

June 3, 2023

Findings revealing efficient assembly of virulence machine could lead to development of treatments for diseases caused by gut pathogens.

'CoA as the central core'
Interview

'CoA as the central core'

June 2, 2023

ASBMB meeting on CoA and its derivatives will take place in Wisconsin in August and will feature sessions on metabolism, intracellular cross talk, proteostasis, autophagy and technological advances in mass spectrometry.

Study uncovers a unique, efficient method of copper delivery in cells
News

Study uncovers a unique, efficient method of copper delivery in cells

May 28, 2023

Discovery will help in treating Menkes disease, other copper deficiency disorders.

As microbiome science forges ahead, will some be left behind?
Essay

As microbiome science forges ahead, will some be left behind?

May 27, 2023

The FDA’s approval of the first fecal microbiota treatment was a watershed moment — and also a wakeup call.

Cystic fibrosis: current understanding and prospects
Health Observance

Cystic fibrosis: current understanding and prospects

May 26, 2023

In observance of National Cystic Fibrosis Awareness Month, we talked with researcher Neil Bradbury.