Journal News

JBC: Outfitting T cell receptors for special combat

Jonathan Griffin
June 1, 2019

Researchers have engineered antibodylike T cell receptors that stick to cells infected with cytomegalovirus, or CMV, which can be deadly for patients with weakened immune systems. These receptors potentially could be used to monitor or destroy the virus and might also be able to target brain tumors.

CMV causes lifelong infection in more than half of all adults by age 40, but the virus lies dormant in most. T cells normally circulate through the body and use their membrane-bound T cell receptors, or TCRs, to detect disease-associated proteins hiding inside infected cells. TCRs then can instruct T cells to destroy the infection. For immunocompromised patients, however, this defense mechanism is diminished, leaving them vulnerable to the virus.

Researchers have used T cells to treat disease before, but engineering and transplanting whole T cells is costly and invasive. In a study published in the Journal of Biological Chemistry, a team of researchers took an alternative approach, producing CMV-detecting TCRs that float freely in the body and bind tightly to their diseased targets.

“Right now, we’ve got a molecule that looks like an antibody but it binds to a (CMV-associated) peptide that would normally be recognized by a TCR,” said Jennifer Maynard, a professor of chemical engineering at the University of Texas at Austin and senior author of the study. “Antibodies cannot normally access these molecules, so that’s a big deal.”

Researchers frequently use bacterial or yeast cells as miniature biomolecule factories, but their nonmammalian molecular machinery often introduces defects in human TCRs, Maynard said. To provide a more suitable environment, the authors used hamster ovary cells to produce the receptors.

New hybrid proteinThis new hybrid protein combines the cell targeting properties of a TCR with the tight binding and free-floating nature of an antibody to create a new molecule able to tag CMV-infected cells specifically. jennifer maynard, ellen wagner/university of texasTCRs naturally bond loosely with their targets, but the authors wanted theirs to bind and not let go. To strengthen these connections, the authors randomly mutated the DNA of the TCR component that detects the CMV peptide. They inserted many versions of the mutated DNA into the hamster cells, which then manufactured about a million types of TCR, Maynard said.

The researchers measured bonding strength by exposing those myriad TCR variations to the CMV peptide.

“We found one that was our favorite,” Maynard said. “We improved the binding affinity 50-fold.”

To liberate the TCRs from the T cell membrane, the researchers further edited the DNA so the TCRs would attach to the protein stem of Y-shaped antibodies. And to help these proteins hold their shape, they added a bond inside the TCR and prevented sugars from attaching.

These new TCRs could track disease progression in patients or evaluate new vaccines. They also might restore immune response in patients by instructing their cells to attack CMV infections, Maynard said.

This new molecule could be effective in treating glioblastoma as well. Although these brain tumors do not produce many distinct markers, they do suppress the immune system, which in CMV-infected patients can bring the virus back to life in tumors, Maynard said.

“Our protein could be used to specifically target glioblastoma cells, and it would provide a very unique marker,” Maynard said. “We would use this to monitor or kill some of those tumor cells.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Jonathan Griffin

Jonathan Griffin is a science communicator for all ASBMB journals. Follow him on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.

Animals have used bioluminescence to communicate for millions of years
News

Animals have used bioluminescence to communicate for millions of years

July 13, 2024

Despite its widespread occurrence, scientists don’t yet know when or where this phenomenon first emerged, or its original function.

Getting to the genetic basis of cardiovascular disease
Journal News

Getting to the genetic basis of cardiovascular disease

July 11, 2024

Edwin G. Peña Martínez received a JBC Tabor award for associating the condition with mutations in noncoding sequences.

Microparticles safeguard vitamins and information
News

Microparticles safeguard vitamins and information

July 9, 2024

Scientists aim to use nanotechnology to combat malnutrition and improve medical recordkeeping in impoverished parts of the world.

Why AlphaFold 3 needs to be open source
Essay

Why AlphaFold 3 needs to be open source

July 7, 2024

The powerful AI-driven software from DeepMind was released without making its code openly available to scientists.

Summertime can be germy
Advice

Summertime can be germy

July 6, 2024

A microbiologist explains how to avoid getting sick at the barbecue, in the pool or on the trail.