Journal News

From the journals: JLR

Vaishnavi Muralikrishnan
May 27, 2021

Why is a high level of HDL cholesterol not always a good thing? How does gut bacteria assimilate dietary lipids? How can researchers measure pleiotropic genetic risk factors? Read about recent papers in the Journal of Lipid Research that address these questions.

Why high HDL is not always good

Heart diseases are the leading cause of death in the U.S. Coronary heart disorder, the most common type of heart disease, is caused by atherosclerosis, or the accumulation of cholesterol in the arterial walls leading to stiffening and lowered blood flow in the arteries. The two types of cholesterol are low-density lipoprotein, or LDL, and high-density lipoprotein, or HDL. While HDL cholesterol often is referred to as "good cholesterol" because of the inverse correlation between HDL levels and heart disorders, presence of excess HDL in plasma may be due to reduced plasma clearance of cholesterol.

Atherosclerosis-445x334.jpg
NIH/FLICKR
This illustration shows a normal artery on the left and narrowing of the artery due to deposit of cholesterol plaque on the right, which represents atherosclerosis.

The primary receptor for HDL is scavenger receptor class B type I, or SR-BI, which promotes clearance of excess cholesterol from the plasma, thus reducing the risk for atherosclerosis.

In a recent study in the Journal of Lipid Research, Sarah C. May and her colleagues at the Medical College of Wisconsin characterized a rare heterozygous variant of the gene encoding SR-BI that results in the substitution of arginine-174 with cysteine, or R174C, in a patient with high HDL cholesterol levels. They demonstrated that the R174C mutation leads to diminished cholesterol transport, suggesting this variant does not clear cholesterol from circulation as intended.

The researchers write that the reduced function of this variant could be due to disruptions in surface electrostatic charges of SR-BI leading to a decrease in the net-positive charge, which in turn could affect the ability of SR-BI to bind HDL and transport cholesterol from HDL particles.

This study provides an insight into the structure and function of SR-BI and emphasizes that measurement of HDL-cholesterol levels may not be a sufficient indicator to predict the risk of cardiovascular diseases accurately.

 

How gut bacteria assimilate dietary lipids

The human intestine is home to trillions of microorganisms known collectively as the gut microbiota. The type and amount of fat we eat can have a significant impact on the gut microbiome and thus on our metabolism and immunity. Sphingolipids are a class of bioactive lipids present in foods such as milk and also produced by gut microbes. However, researchers do not understand yet how the gut microbes use sphingolipids.

 

Recent research by Min-Ting Lee and colleagues at Cornell University published in the Journal of Lipid Research used a novel technique called Bioorthogonal labeling-Sort-Seq-Spec, or BOSSS, to study the assimilation of sphingolipids by gut microbes. The first step in BOSSS, bioorthogonal labeling of sphingolipids, involved labeling without interfering with native biochemical processes in the body. The next step was fluorescence-based sorting of microbes containing the labeled sphingolipids. Finally, the sorted microbes were sequenced and analyzed by mass spectrometry to identify products of sphingolipid assimilation.

The researchers found that sphingolipids are assimilated primarily by a type of gut microbes known as Bacteriodes. This improves our understanding of how dietary sphinganine is processed in the body and how it in turn affects the gut microbiome. In addition, the novel BOSSS technique is useful to study the flux of any alkyne-labeled metabolite in diet–microbiome interactions.

 

A randomization to measure risk

Variations in certain genes can act as risk factors for some diseases, and these risk associations can be studied using a technique called Mendelian randomization, or MR. This technique measures variations in genes whose functions are known in order to determine whether the variations can cause specific diseases in humans.

In a recent study in the Journal of Lipid Research, David G. Thomas and colleagues at Columbia University performed an MR of lipid traits such as levels of low-density lipoprotein, high-density lipoprotein, triglycerides, body mass index, Type 2 diabetes and systolic blood pressure in coronary artery disease, or CAD, in large genomewide association study data sets.

A challenging aspect of determining the effect of risk factors is that some of these lipid trait variants may be pleiotropic, meaning that a single gene can influence two or more seemingly unrelated phenotypic traits. This study used multivariate MR analysis to evaluate the pleiotropic effects of lipid trait genetic variants and to adjust for these effects in evaluating the risk for CAD. The researchers reported that the lipid traits they studied all are associated independently with CAD even after adjusting for their pleiotropic effects.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Vaishnavi Muralikrishnan

Vaishnavi Muralikrishnan is a Ph.D. candidate at Indiana University. She studies ovarian cancer stem cells in the laboratory of Kenneth Nephew. She is passionate about science communication and enjoys her naps and drinking chai.

Related articles

From the journals: JLR
Brian O'Flynn
From the journals: JLR
Brian O'Flynn
From the journals: JLR
Lisa Learman & Laurel Oldach

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Social stress can speed up immune system aging
News

Social stress can speed up immune system aging

July 2, 2022

“People who experienced more stress had a lower proportion of ‘naïve’ T cells … They also have a larger proportion of ‘late differentiated’ T cells.”

Discover BMB: A reimagining of our annual meeting
Annual Meeting

Discover BMB: A reimagining of our annual meeting

June 28, 2022

“Once leadership has made a decision, such as completely changing the context in which our annual meeting occurs, nothing is sacrosanct,” program planning committee co-chairs Karen Allen and Craig Cameron write.

Researchers unravel mysteries of puzzling bacterial signals in our blood
Feature

Researchers unravel mysteries of puzzling bacterial signals in our blood

June 25, 2022

'Goldilocks phenomenon' could be good or bad, depending on a range of factors.

‘Molecular LEGO’ study analyzes building blocks of partially disordered protein
News

‘Molecular LEGO’ study analyzes building blocks of partially disordered protein

June 18, 2022

This method, detailed in PNAS, could affect a relatively young and exploding field of study.

Closing gaps to find new energy sources
News

Closing gaps to find new energy sources

June 15, 2022

Researchers implemented a new process to produce butanol, butanoic acid, hexanol and hexanoic acid.

Genetic mutations can be benign or cancerous
News

Genetic mutations can be benign or cancerous

June 12, 2022

A new method to differentiate between them could lead to better treatments.