News

How to catch and kill a coronavirus
on a doorknob

John Arnst
May 27, 2020

More than two months after the World Health Organization declared the outbreak of the new coronavirus a global pandemic, we lather and scrub our hands — singing Happy Birthday, twice, or maybe the chorus to Mr. Brightside — to wash away the possibility that we’ll bring the virus into our mouths and lungs from a contaminated handrail or doorknob. To cut off these routes of indirect transmission, researchers at Miami University in Ohio are developing polymer coatings for public surfaces that have the potential to capture and inactivate SARS-CoV-2, the virus that causes COVID-19.

Page-Rick-400x461.jpg
Jeff Sabo/University of Miami Ohio
Rick Page

Rick Page and Dominik Konkolewicz, who specialize in protein biochemistry and polymer chemistry, respectively, recently received $181,849 from the National Science Foundation for this work. They plan to develop protein–polymer materials that can use peptides to either capture the virus by grabbing onto its spike proteins or inactivate the virus by disrupting its outer lipid layer, or do both.

Konkolewicz-Dominik-400x460.jpg
Jeff Sabo/University of Miami Ohio
Dominik Konkolewicz

“We're taking two reasonably different areas of chemistry and putting them together to make advances on both sides,” Page said. “Neither of us would be able to do this on our own."

Page and Konkolewicz have been collaborating for more than six years and have worked on applying functional groups that can disrupt vesicles and other lipid layers to polymer coatings. They investigate both how synthetic macromolecules behave in contact with biological species and how biological membranes interact with the polymers, as sticking macromolecules to a synthetic surface can cause changes in the combined 3-D net-like structure that affect the performance of both materials.

“We can change how closely we pack the net elements and where we place different groups,” Konkolewicz said. “If we change the structure in a systematic fashion, how does that impact the material's performance?”

The researchers also intend to evaluate the overall durability of the polymer–protein coatings once they’ve been applied to a surface; a coating that rubs off the first time someone touches it would be of little practical use.

“We can put the peptides (right) on surfaces … but there's very little chance that the peptide would stay on the surface for the length of time that we want it to. So if we're looking at a doorknob, and you touch the doorknob, the peptide's gone,” Konkolewicz said. "On the other extreme, we can make purely synthetic materials that have an incredibly long lifetime but don't have any biological function.”

According to Page, another challenge will be ensuring that functional groups remain active in the environment where the materials are tested.

“We typically think of them acting in water, but we're going to be putting them on a surface where they may very well be getting dried,” he said. “(We’re) trying to figure out how much of these we need to put on the surface and if we can keep the groups functional so they are still able to sequester a virion.”

Like researchers at most universities, Page and Konkolewicz have had their labs — which are around 1,400 square feet each — closed since mid-March. However, they recently received approval to begin working on their NSF-funded project in June, which will entail researchers working in shifts and maintaining appropriate distance from one another.

“I think it's going to start off with a few graduate students coming back,” Page said. “We’re doing all of the intro work that we can (for the COVID-19 project) at home … to try to get things ready to go so that come June 1, we can hit the ground running.”

John Arnst

John Arnst is a science writer for ASBMB Today.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Gut microbiome shaped by dietary sphingolipids
Journal News

Gut microbiome shaped by dietary sphingolipids

September 22, 2020

A new tracing method described in the Journal of Lipid Research offers clues on how a macronutrient interacts with the microbes that live inside us.

From the journals: JBC
Journal News

From the journals: JBC

September 21, 2020

Proteases that fire up the flu. A sulfate pocket to take out MRSA. Proteins that prompt cancer protrusions. Read about recent papers on these topics and more.

AeroNabs promise powerful, inhalable protection against COVID-19
News

AeroNabs promise powerful, inhalable protection against COVID-19

September 20, 2020

As the world awaits vaccines to bring the COVID-19 pandemic under control, UC San Francisco scientists have devised a novel approach to halting the spread of SARS-CoV-2, the virus that causes the disease.

Keeping bone and muscle strong on the ISS
News

Keeping bone and muscle strong on the ISS

September 19, 2020

Researchers helped mice stay mighty with an experiment to counter the effects of microgravity. The gene treatment might also enhance muscle and bone health on Earth — and in humans.

Understanding the impact of Type 1 diabetes susceptibility genes
Research Spotlight

Understanding the impact of Type 1 diabetes susceptibility genes

September 17, 2020

Starting in eighth grade, a series of mentors who saw something special in Sharifa Love–Rutledge helped her stay on the path to being a researcher — and becoming a mentor to others.

Re-creating coagulation in a lab
Journal News

Re-creating coagulation in a lab

September 15, 2020

Threatened arthropods are in the crossfire of medical and conservation efforts, but new research could benefit horseshoe crabs and humans alike.