Research Spotlight

Fishing for enzymes deep in the ocean

Laurel Oldach
April 29, 2022

When a research team pulls up a trawling net from the ocean floor, researchers often scramble to douse the specimens in ethanol or formaldehyde. It’s important to prevent decay of organisms that usually die before they even reach the surface. But Anderson Garbuglio de Oliveira, a chemist studying marine bioluminescence, would rather they were frozen.

Gabriela Galeazzo
A bioluminescent coral

“If you throw a net in the ocean, you will probably find a lot of bioluminescent organisms,” he said. About 90% of deep sea species produce light; but that glow is almost invisible in bright daylight, and his shipboard colleagues are usually interested in other topics. To retrieve and freeze bioluminescent tissue samples before they are pickled in formaldehyde, he said, “I must be very quick.”

Back in the lab at the University of Sao Paulo, Oliveira’s research team investigates the activity of luciferase enzymes, which produce light through a reaction between oxygen and a family of substrate molecules. While some luminescence systems, such as those from comb jellies, are well understood, working with other organisms, such as segmented worms, is “very, very difficult,” Oliveira said, “because their systems are completely new. … Most of the time you have no idea what you’re dealing with.”

Biotechnologists have found numerous laboratory uses for the best-known luciferases, which come from jellies and fireflies. Still, surprisingly little is known about the other biochemical systems that produce light, a phenomenon that evolved on at least 94 independent occasions.

Oliveira is looking for enzymes with properties that could be biochemically interesting and lead to novel uses, such as detecting magnesium or calcium without needing to use fluorescence microscopy. He said, “You can find a lot of interesting things in these weird animals.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.