Journal News

How is myelin made?

Understanding the protective coating on neurons may inform future therapies
Nuala Del Piccolo
April 14, 2020

Myelin is the protective lipid sheath wrapped around a nerve. It functions as an insulator, akin to the protective coating on a wire, speeding up electrical transmission of signals along a neuron. Myelin also plays a role in maintaining the health of neurons. Myelin function is dysregulated in many neurological disorders, including multiple sclerosis.

Jennifer Siow
This artist’s rendition, created by the first author's daughter, shows neurons with (right) and without (left) a myelin sheath. The neuron with a myelin sheath functions at full capacity, while a neuron without myelin is unhealthy. Oligodendrocytes are depicted in red.

Oligodendrocytes are the myelin-producing cells of the central nervous system. The myelin sheath around a neuron is part of an oligodendrocyte’s plasma membrane, and a single oligodendrocyte can myelinate as many as 50 neurons. During myelination, an oligodendrocyte stretches out tubes of membrane in search of a neuron. When it finds one, it sends the necessary building materials down the tubes and, still operating from a distance, assembles a myelin sheet around the neuron: Composition, number of wraps and total coverage all matter. A myelinated neuron that loses its coating cannot transmit electrical signals properly, leading to loss of muscle control and other neurological problems. 

The myelin sheath is mostly made of lipids, including sphingolipids, which are critical to myelin’s structure and function. The enzyme serine palymitoyltransferase, or SPT, produces the backbone of all sphingolipids, and the membrane-bound protein ORMDL monitors sphingolipid levels and regulates SPT activity. ORMDL’s activity must be precise: Too little sphingolipid production impedes myelination, and too much can be toxic. 

Binks Wattenberg, a professor of biochemistry and molecular biology at Virginia Commonwealth University, studies membrane biogenesis and now focuses on lipid biogenesis. “I am very curious about how the cell knows when to make sphingolipid and when to stop,” Wattenberg said. “I think ORMDL might be the key to answering that question.” 

Wattenberg’s next-door lab neighbor, Carmen Sato–Bigbee, a professor in the same department, studies myelination, with a focus on oligodendrocytes. The two joined forces to study the role of sphingolipid biosynthesis in myelination in developing brains, and reported their results in the Journal of Lipid Research

To uncover the dynamics of sphingolipid content and synthesis during myelination, Wattenberg and Sato–Bigbee’s team worked with newborn rat brains, because peak myelination occurs directly after birth. Only one in five cells in the brain is an oligodendrocyte, so the team isolated these myelin-producing cells for their experiments. 

The researchers found that a large portion of the sphingolipids present in oligodendrocytes during myelination have an atypically long backbone — an 18-carbon chain instead of a 16-carbon chain. “The 18-carbon chain backbone points to a change in lipid composition during myelination, which might explain the insulating properties of myelin,” Wattenberg said. “In future work, we want to look at the role of each type of sphingolipid in myelination.”

The study also found that SPT activity increases for the first few days of myelination and then begins to decrease. ORMDL activity is not measurable, but the team deduced that ORMDL isoform expression varies over time. These findings pave the way for future experiments. 

“The control of sphingolipid biosynthesis is key to myelination, and understanding how this process works will enable us to alter it in future treatments,” Wattenberg said. “Our pie-in-the-sky goal is to understand sphingolipid biosynthesis so well that we can reprogram oligodendrocytes and reverse demyelination in degenerative myelination diseases like MS.”

 

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Nuala Del Piccolo

Nuala Del Piccolo is a freelance scientific writer and advocate for diversity in STEM. She earned her B.S. in biomedical engineering and Ph.D. in materials science at Johns Hopkins University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From the journals: JLR
Journal News

From the journals: JLR

Sept. 30, 2022

A new site-specific cholesterol control option and a better way to assess vitamin D status in critical care. Read about papers on these topics recently published in the Journal of Lipid Research.

Living in a bubble
Annual Meeting

Living in a bubble

Sept. 29, 2022

This symposium, Protein Machines and Disorder, will be part of #DiscoverBMB 2023.

Keep your friends close and your RNAs closer
Annual Meeting

Keep your friends close and your RNAs closer

Sept. 29, 2022

This symposium, Regulation of RNA, will be part of #DiscoverBMB 2023.

A membrane ATPase without transporter activity
Journal News

A membrane ATPase without transporter activity

Sept. 28, 2022

A classic article in the Journal of Biological Chemistry reflects on Guido Guidotti’s laboratory and the search for CD39.

The era of “smart” organelles
Annual Meeting

The era of “smart” organelles

Sept. 28, 2022

This symposium, Organelles, Mechanisms and Phase Properties of Cellular Quality Control, will be part of #DiscoverBMB 2023.

Lipids, lipids everywhere!
Annual Meeting

Lipids, lipids everywhere!

Sept. 27, 2022

This symposium, Lipid Dynamics and Signals in Membrane and Protein Structure, will be part of #DiscoverBMB 2023.