News

New surfactant could improve lung treatments for premature babies

Researchers report progress toward an alternative to animal-derived formulation
Anne Frances Johnson
March 24, 2024

Scientists have developed a new lung surfactant that is produced synthetically rather than relying on the use of animal tissues. With further development, the formulation could provide a cheaper and more readily available alternative to Infasurf, a medication used to prevent and treat respiratory distress in premature babies.

Surfactants are substances that decrease surface tension where liquids interface with other liquids, gases or solids. In addition to their use in medicines, they are found in a wide range of products including detergents, cosmetics, motor oils and adhesives.

Scientists at Discover BMB in San Antonio reported a new lung surfactant that is produced synthetically rather than derived using animal tissues. It might eventually provide a cheaper and more accessible alternative to medication currently used to prevent and treat respiratory distress in premature babies.
Scientists at Discover BMB in San Antonio reported a new lung surfactant that is produced synthetically rather than derived using animal tissues. It might eventually provide a cheaper and more accessible alternative to medication currently used to prevent and treat respiratory distress in premature babies.

Suzanne Farver Lukjan, a lecturer in chemistry at Troy University in Alabama, led the work.

“A synthetic surfactant could potentially have a longer shelf life, lower production costs, have less batch variability and pose less risk of an immune response compared to animal-derived lung surfactants,” she said. “We hope our formulation will one day be used in hospitals.”

Lukjan will present the research at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, which is being held March 23–26 in San Antonio.

Lung surfactants help premature babies breathe while their lung cells finish developing. In addition to offering a potential alternative to replace Infasurf for babies, researchers say the new synthetic surfactant could be useful for treating adults with lung injuries as a result of diseases such as chronic obstructive pulmonary disorder, miner’s lung or emphysema.

Researchers have previously attempted to develop synthetic lung surfactants, but some have been removed from the market and others have not been able to lower surface tension as well as animal-derived formulations.

In the new work, Lukjan’s team created candidate surfactants from synthetic lipids (fats) and peptides (short chains of amino acids) and then tested their surface-tension-lowering capabilities. They aimed to mimic the composition, lipid phase behavior and biophysical function of Infasurf as closely as possible.

After tweaking a step in the sample preparation process, the researchers found a few formulations that showed particular promise. Although tests demonstrated that the chemical behavior of the synthetic surfactants was quite different from that of Infasurf, the new surfactants were able to mimic the drug’s functionality in terms of lowering surface tension and seem to achieve the optimal range in terms of peptide concentration.

As a next step, Lukjan said, the group plans to continue to refine and test their formulation to further optimize the combination of lipids and peptides. The surfactant would also need to undergo safety testing before it could be used clinically.

This work was partially funded by ONY Biotech Inc., maker of Infasurf.  

Suzanne Lukjan will present this research from 4:30 to 6:30 p.m. CDT on Monday, March 25, in the exhibit hall of the Henry B. González Convention Center (Poster Board No. 210) (abstract). 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Anne Frances Johnson

Anne Frances Johnson is founder and lead science writer at Creative Science Writing based in Chapel Hill, North Carolina. 

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.