Journal News

JLR: Technique boosts omega-3 fatty acid levels in brain 100-fold

ASBMB Today Staff
By ASBMB Today Staff
March 01, 2019
Ball-and-stick diagram of eicosapentaenoic acidA ball-and-stick diagram of eicosapentaenoic acid, which has been shown to be effective in treating and preventing depression. SubDural12/Wikimedia Commons

Getting enough docosahexaenoic and eicosapentaenoic acid, or DHA and EPA, into the brain to study their effects on conditions such as Alzheimer’s and depression — which they have been shown to help — is no easy task. While supplements containing these omega-3 fatty acids exist, there is scant evidence showing that the supplements actually increase DHA or EPA in the brain. To increase levels of EPA in the brain measurably, a person would have to consume a small glass of it each day, quite possibly with the side effect of smelling like fish.

Now researchers from the University of Illinois at Chicago report that adding a lysophospholipid form of EPA, called LPC-EPA, to the diet can increase levels of EPA in the brain 100-fold in mice. The amount of LPC-EPA in the diet required for this increase is rather small for mice — less than a milligram per day. The human equivalent would amount to less than a quarter of a gram per day.

DHA and EPA are known to have anti-inflammatory effects and protect against various neurological and metabolic diseases. DHA has been shown to be good for memory and cognitive deficits associated with Alzheimer’s disease, and, in studies, EPA has been shown to be effective in treating and preventing depression.

DHA is already prevalent in the brain, and there is little evidence to support the idea that eating lots of fish oil, either through whole fish or supplements, increases levels of DHA in the brain. EPA is found in very low concentrations in the brain, and boosting those levels through consuming EPA has proved difficult, because the amount that would need to be ingested to show increases in brain EPA levels is quite large — 40 to 50 milliliters daily. And researchers still don’t really have a great understanding of how EPA works to reduce depression and how much is needed in the brain to have these anti-depressive effects.

Papasani Subbaiah is a professor of medicine and biochemistry and molecular genetics in the UIC College of Medicine and corresponding author of a paper about the new work published in the Journal of Lipid Research.

“In order to do the trials to determine the proper dosage and how EPA works in regards to depression, we need to have a better way of getting it into the brain because you need to consume so much of it that it’s just not practical, at least for human trials,” Subbaiah said.

EPA provided in the form of lysophospholipid escapes the degradation by pancreatic enzymes that prevents the type of EPA in fish oil supplements from passing into the brain, he said.

“It seems that there is a transporter at the blood–brain barrier that EPA must pass through in order to get into the brain, but EPA in fish oil can’t get through, whereas LPC-EPA can,” Subbaiah said. “You don’t have to consume all that much LPC-EPA to have significant increases of EPA show up in the brain, so this could be a way to do rigorous studies on the effects of EPA in humans.”

Producing LPC-EPA is not difficult, and it can be incorporated into feed pellets that Subbaiah fed to laboratory mice. After eating 1 mg per day of the LPC-EPA in their feed for 15 days, these mice had up to 100 times more EPA in their brains than mice eating plain EPA. Interestingly, the mice eating LPC-EPA also had two times more DHA in their brains.

“This study is proof of the concept that we can increase levels of both EPA and DHA in the brain via supplements or by incorporating LPC-EPA in the diet,” Subbaiah. “Using this technique, we can now perform critical studies to see if increasing concentrations of these fatty acids in the brain can help prevent and treat Alzheimer’s and depression in mouse models, and then move into human trials if results are promising.”

This article is adapted from a press release produced by the University of Illinois at Chicago News Bureau.
 

ASBMB Today Staff
ASBMB Today Staff

This article was written by a member or members of the ASBMB Today staff.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Your genetics influence how resilient you are to cold temperatures – new research
News

Your genetics influence how resilient you are to cold temperatures – new research

March 06, 2021

Research suggests that if you’re deficient in a certain muscle protein, your body can maintain a higher core temperature and you shiver less when exposed to cold.

Understanding cellular function to understand life
ASBMB Annual Meeting

Understanding cellular function to understand life

March 05, 2021

Geoffrey Hesketh will speak during the Molecular & Cellular Proteomics early career researcher session on proximity-dependent biotinylation at the 2021 ASBMB Annual Meeting.

Decoding organ communication systems
ASBMB Annual Meeting

Decoding organ communication systems

March 04, 2021

Ilia Droujinine will speak during the Molecular & Cellular Proteomics presentation on biological insights revealed by proteomics at the 2021 ASBMB Annual Meeting.

Branon works to break barriers in science and higher education
ASBMB Annual Meeting

Branon works to break barriers in science and higher education

March 03, 2021

Tess Branon will speak on proximity-dependent biotinylation during the Molecular & Cellular Proteomics early-career researcher session at the 2021 ASBMB Annual Meeting.

Brain Injury Awareness Month 2021
Health Observance

Brain Injury Awareness Month 2021

March 01, 2021

In the U.S., about 2.8 million people sustain a traumatic brain injury annually. Learn about recent research on TBI-related dementia, dysfunctional mitochondria and other work powering the march toward better therapies.

The evolution of proteins from mysteries to medicines
Essay

The evolution of proteins from mysteries to medicines

February 27, 2021

An essay in observance of National Protein Day.