Journal News

JLR: Using microRNAs to target cancer cells

Dawn Hayward
March 1, 2016

Lipids form the membranes of our cells and serve as rainy day fuel. However, cancer cells have a habit of dysregulating every possible pathway they can, including lipid metabolism, generating an overabundance of lipids. Fortunately, the body already produces molecules that have the potential to stop this dysregulation in its tracks: microRNAs.

Summary of the metabolic pathways altered in cancer that are described in this review

In a recent review in the Journal of Lipid Research, Marta Gómez de Cedrón and Ana Ramírez de Molina of the Madrid Institute of Advanced Studies delve into exactly which microRNAs can be used to target cancer cells.

Lipids, molecules known for their insolubility in water, are synthesized to provide membrane integrity and are signaling molecules used by downstream effectors in the cell. As an energy source, lipids are broken down via beta-oxidation, and the intermediates can be used in other metabolic pathways.

MicroRNAs, meanwhile, are small single-stranded RNA molecules that can stop the synthesis of proteins. They bind to mRNA transcripts in the cell and cause their degradation, preventing production of proteins that cancer cells so desperately need.

The authors of the JLR review discuss several lipid-metabolism enzymes that cancer cells rely on whose targeting could prevent the synthesis and dissemination of lipids altogether. For example, an enzyme called fatty acid synthase, which is involved in the making of lipids, is upregulated and overused in cancer cells. Activation of a microRNA targeting this gene may shut down production of this enzyme and turn off this essential pathway. Mono-acyl glycerol lipase, which is involved in storing these lipids, may also be targeted.

Why is all of this important? If researchers can use normal cells’ machinery to target cancer cells specifically, the cancer may be slowed or completely halted. In fact, scientists have used antisense oligonucleotides that bind to microRNAs and repress their action as well as primary microRNAs, which mimic RNA of choice and activate their function. These methods have been used as cancer therapy in clinical trials.

MicroRNAs stand out from conventional gene-therapy-based approaches and have a niche in lipid metabolism. They can be designed specifically to target a gene and serve as modulators rather than on/off switches. Increased lipid formation and breakdown in cancer cells creates vulnerability that might be taken advantage of by microRNAs. In addition, cancer as a whole involves a combination of many factors, and microRNAs could lead the attack as professional pathway regulators to reset the normal metabolic landscape.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Dawn Hayward

Dawn Hayward earned a Ph.D. in biochemistry from the Johns Hopkins University School of Medicine

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From the journals: MCP
Journal News

From the journals: MCP

Aug. 12, 2022

Analysis of large samples of proteins just got an upgrade. Read about the latest breakthroughs in proteomics in these papers from the journal Molecular & Cellular Proteomics.

Is location everything?
Journal News

Is location everything?

Aug. 9, 2022

A lab at the University of Illinois Chicago develops site-specific tools to probe the cellular function of cholesterol.

Did gonorrhea give us grandparents?
News

Did gonorrhea give us grandparents?

Aug. 9, 2022

UC San Diego researchers track evolution of gene variant that supports cognitive health in older humans but may have first emerged to protect against bacteria.

Why researchers are studying menstrual blood
News

Why researchers are studying menstrual blood

Aug. 7, 2022

Some scientists are challenging the conventional view that menstrual effluent is merely a waste product.

From the journals: JBC
Journal News

From the journals: JBC

Aug. 5, 2022

Defining functional redundancy in mycobacteria. Finding aqueous pores in sodium channels. Identifying new substrates for a ubiquitin ligase. Read about papers on these topics.

Cannabis hyperemesis and the cure that burns
Feature

Cannabis hyperemesis and the cure that burns

Aug. 3, 2022

When chronic users of marijuana show up in the ER with uncontrollable vomiting, physicians have a salve that can relieve their pain. Scientists aren’t sure why it works.