Journal News

JLR: Using microRNAs to target cancer cells

Dawn Hayward
March 01, 2016

Lipids form the membranes of our cells and serve as rainy day fuel. However, cancer cells have a habit of dysregulating every possible pathway they can, including lipid metabolism, generating an overabundance of lipids. Fortunately, the body already produces molecules that have the potential to stop this dysregulation in its tracks: microRNAs.

Summary of the metabolic pathways altered in cancer that are described in this review

In a recent review in the Journal of Lipid Research, Marta Gómez de Cedrón and Ana Ramírez de Molina of the Madrid Institute of Advanced Studies delve into exactly which microRNAs can be used to target cancer cells.

Lipids, molecules known for their insolubility in water, are synthesized to provide membrane integrity and are signaling molecules used by downstream effectors in the cell. As an energy source, lipids are broken down via beta-oxidation, and the intermediates can be used in other metabolic pathways.

MicroRNAs, meanwhile, are small single-stranded RNA molecules that can stop the synthesis of proteins. They bind to mRNA transcripts in the cell and cause their degradation, preventing production of proteins that cancer cells so desperately need.

The authors of the JLR review discuss several lipid-metabolism enzymes that cancer cells rely on whose targeting could prevent the synthesis and dissemination of lipids altogether. For example, an enzyme called fatty acid synthase, which is involved in the making of lipids, is upregulated and overused in cancer cells. Activation of a microRNA targeting this gene may shut down production of this enzyme and turn off this essential pathway. Mono-acyl glycerol lipase, which is involved in storing these lipids, may also be targeted.

Why is all of this important? If researchers can use normal cells’ machinery to target cancer cells specifically, the cancer may be slowed or completely halted. In fact, scientists have used antisense oligonucleotides that bind to microRNAs and repress their action as well as primary microRNAs, which mimic RNA of choice and activate their function. These methods have been used as cancer therapy in clinical trials.

MicroRNAs stand out from conventional gene-therapy-based approaches and have a niche in lipid metabolism. They can be designed specifically to target a gene and serve as modulators rather than on/off switches. Increased lipid formation and breakdown in cancer cells creates vulnerability that might be taken advantage of by microRNAs. In addition, cancer as a whole involves a combination of many factors, and microRNAs could lead the attack as professional pathway regulators to reset the normal metabolic landscape.

Dawn Hayward

Dawn Hayward earned a Ph.D. in biochemistry from the Johns Hopkins University School of Medicine

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

The NIH is turning the human reference genome into a pangenome
News

The NIH is turning the human reference genome into a pangenome

November 26, 2020

In 2000, the human genome was announced as completed. But it was filled with gaps, and did not represent humanity’s genetic diversity. Read and watch a short film about recent updates.

From the journals: MCP
Journal News

From the journals: MCP

November 25, 2020

A destructive disease can lurk in a citrus plant’s vascular system. Misfolded proteins offer a key to inflammation in liver disease. And proteomic studies provide clues about signaling linked to neurological disorders.

Targeting two-faced nuclear receptors to fight cancer
News

Targeting two-faced nuclear receptors to fight cancer

November 24, 2020

For small-molecule cancer drugs, context is everything. Drugs that ameliorate cancer in some tissues may increase the cancer risk in others. Researcher Stephen Safe has turned this challenge into an opportunity.

 Government-funded scientists laid the groundwork for billion-dollar vaccines
News

Government-funded scientists laid the groundwork for billion-dollar vaccines

November 22, 2020

Basic research conducted at the NIH, Defense Department and federally funded academic laboratories has been essential to rapid development of vaccines in response to COVID-19.

Knocking out drug side effects with supercomputing
News

Knocking out drug side effects with supercomputing

November 21, 2020

A team from Stanford University used the world's fastest supercomputer to simulate how drug molecules might alter the arrangement of G protein-coupled receptors to deliver beneficial effects without side effects.

From the journals: JLR
Journal News

From the journals: JLR

November 19, 2020

A master regulator governing color production in yeast and fungi, a novel cholesterol trafficking pathway in blood, and a lipid metabolite that regulates neuronal firing.