Lipid News

At the interface

Sphingosine kinase 1 membrane interaction
Lina M. Obeid Michael J. Pulkoski-Gross
By Lina M. Obeid and Michael J. Pulkoski-Gross
February 01, 2019

Sphingolipids, or SLs, have emerged as critical players in membrane stability and as essential signaling molecules. SLs range from abundant species involved in maintaining membrane integrity, such as sphingomyelin, to scarce and potent signaling species, such as sphingosine-1-phosphate, or S1P. S1P mediates critical signaling functions through interaction with its cognate G-protein coupled receptors in development and in several disease states. In recent decades, many resources have been devoted to understanding how S1P generation is regulated.

S1P can be generated through the action of two sphingosine kinase isoforms. The more commonly expressed of the two is sphingosine kinase 1, or SK1. This enzyme has garnered attention as a potential therapeutic target, as it often is upregulated in diseases such as cancer. To gain access to its substrate, sphingosine, and to release its product, S1P, SK1 must interact directly with membranes. However, how SK1 achieves membrane binding has been contested in the literature. How does a cytosolic lipid-metabolizing enzyme without any lipid-binding domains interact with membranes to access its substrate?

This image of SK1 binding to membranes shows potential SK1 membrane binding poses for SK1 in the presence of flat and curved membranes. Michael Pulkoski-Gross

Previously, researchers thought SK1 translocation was dependent on other proteins. However, recent data show how SK1 can bind directly to membranes. SK1 possesses an intrinsic interface composed of two motifs: one electrostatic motif and one hydrophobic motif. Using biochemical methods, we found that these two motifs are necessary for membrane interaction, thus implicating their function as a single entity. Using hydrogen deuterium exchange mass spectrometry, we confirmed that SK1 employs a single contiguous interface that contains the two motifs. In cancer cells, disruption of this interface causes loss of membrane association and decreases SK1 activity. Past research has shown that interaction with membranes is critical for mediating SK1-dependent biologies including tumor cell invasion and endocytosis. This could provide a new avenue for targeting SK1 in diseases. Inhibition of membrane binding would deny SK1 access to its substrate, thereby inhibiting all activity.

Recent research shows an important role for SK1 in endocytic trafficking. SK1 presence at endocytic membranes would require membrane binding and curvature sensing. However, how SK1 can do this is largely unknown. Analysis of the atomic structure of SK1 revealed a potential dimerization interface. Such dimerization would align the membrane-binding interface of each SK1 monomer. This would strengthen the interaction and potentially allow for physical curvature sensing by SK1. This remains to be validated, but it’s an exciting hypothesis. Another way to potentially inhibit activity would be to inhibit dimerization, if that is required for activity and membrane binding.

Significant strides have been made in understanding the structure and function of many SL metabolizing enzymes, and exciting questions remain to be answered, especially for SK1. How can SK1 decipher the difference between the charges of different anionic phospholipids? How does the catalytic cycle progress once SK1 is at the membrane? Is dimerization required for membrane binding/curvature sensing? What role is the hydrophobic patch playing in curvature sensing?

Biophysical, biochemical and structural research will reveal the secrets of how SL enzymes work and how they might be exploited for therapeutic development.

Lina M. Obeid
Lina M. Obeid

Lina M. Obeid s the dean of research at the State University of New York school of medicine and a SUNY distinguished professor of medicine at Stony Brook University Medical Center.

Michael J. Pulkoski-Gross
Michael J. Pulkoski-Gross

Michael J. Pulkoski-Gross received his Ph.D. in the Obeid lab in the department of medicine at Stony Brook University. He is now a postdoctoral fellow in Ellen Yeh’s laboratory in the department of biochemistry at Stanford University.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare
News

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare

September 27, 2020

Nicholas McCarty of New York University writes that genetically engineering drug users’ brains is short-sighted, reactive and unnecessary.

Lessons from how the polio vaccine
News

Lessons from how the polio vaccine

September 26, 2020

Despite the polio vaccine’s long-term success, manufacturers, government leaders and the nonprofit that funded the vaccine’s development made several missteps.

From the journals: MCP
Journal News

From the journals: MCP

September 25, 2020

How marine iguanas mark their turf. A new way to study Parkinson’s disease. Glycosylation in influenza A. Read about recent papers on these topics in the journal Molecular & Cellular Proteomics.

Gut microbiome shaped by dietary sphingolipids
Journal News

Gut microbiome shaped by dietary sphingolipids

September 22, 2020

A new tracing method described in the Journal of Lipid Research offers clues on how a macronutrient interacts with the microbes that live inside us.

From the journals: JBC
Journal News

From the journals: JBC

September 21, 2020

Proteases that fire up the flu. A sulfate pocket to take out MRSA. Proteins that prompt cancer protrusions. Read about recent papers on these topics and more.

AeroNabs promise powerful, inhalable protection against COVID-19
News

AeroNabs promise powerful, inhalable protection against COVID-19

September 20, 2020

As the world awaits vaccines to bring the COVID-19 pandemic under control, UC San Francisco scientists have devised a novel approach to halting the spread of SARS-CoV-2, the virus that causes the disease.