Journal News

JBC: Another role for c-Myc,
one of cancer’s biggest players

Courtney Chandler
February 01, 2017

Cancers involve a diverse range of genes and proteins that aid in their formation, progression and maintenance. One gene that has been implicated in many cancers is c-Myc. One cancer, a common liver cancer in children, didn’t appear to involve c-Myc. But now, in a recent article selected as one of the Editors’ Picks in in the Journal of Biological Chemistry, a team led by Edward Prochownik of the University of Pittsburgh has shown that hepatoblastomas are no different from most other cancers: Tumor progression requires c-Myc.

c-Myc’s absence in the liver impairs tumor growth but not initiation.c-Myc’s absence in the liver impairs tumor growth but not initiation.IMAGE PROVIDED BY EDWARD PROCHOWNIKThe c-Myc gene encodes a transcription factor, which is a protein that binds to DNA and promotes the expression of particular genes. When c-Myc is overexpressed in cancers, it effectively signals to turn on other genes at levels higher than normal. The products of these genes then can promote cancer development and progression.

Hepatoblastoma is the most common pediatric liver cancer. It often is diagnosed in children under the age of 3 and occurs with higher incidence in low-birthweight infants. Survival rates are greater than 80 percent if the tumor is removed completely with surgery but drop to as low as 20 percent if the tumor spreads beyond the liver.

On the surface, c-Myc generally doesn’t appear to be involved in the formation of hepatoblastoma, although it has been seen at high levels in some tumors. Instead, hepatoblastoma is characterized by mutations in two key proteins: beta-catenin and yes-associated protein, abbreviated YAP. “In our work, we asked whether c-Myc was required for beta-catenin and YAP to induce hepatoblastomas in mice,” explains Prochownik.

The investigators asked if the two proteins lead to cancer by themselves or if they also need c-Myc. They used mice genetically engineered to lack the c-Myc gene in their livers and then used beta-catenin and YAP to induce hepatoblastoma formation. They observed that the mice lacking c-Myc in their livers survived much longer than mice with intact c-Myc.

The researchers used metabolic and molecular profiling to understand why the mice without c-Myc survived longer. Through techniques including RNA sequencing and mitochondrial analysis, they observed a role for c-Myc in supporting tumor growth. “The apparent role for c-Myc in supporting tumor growth was its ability to maximize certain crucial metabolic processes, such as protein synthesis and glucose uptake,” says Prochownik. There were more cellular building blocks that made increased growth and cancer progression possible.

The work of Prochownik and colleagues indicates that c-Myc is involved in tumor progression but not initiation. Given c-Myc’s involvement in a number of cancers, why is this news? “Our findings indicate that even tumors which do not superficially appear to involve c-Myc deregulation, such as hepatoblastomas, are nevertheless highly dependent on it,” explains Prochownik.

This was somewhat surprising, as recent work from the same laboratory has shown that c-Myc is not required for the long-term replacement and maintenance of normal noncancerous liver cells. Prochownik’s group believes that this disparity is due to the nature of cancerous cells. c-Myc is largely dispensable in normal cells that have relatively slow and highly controlled growth. However, in cancer cells that undergo rapid division and metabolism, c-Myc is required. c-Myc’s role may be to allow cells to utilize nutrients and cellular precursors to permit the type of rapid proliferation that seldom would occur under normal circumstances.

c-Myc is possibly the most frequently deregulated protein in human cancer, making it a good target for therapeutics. The work of Prochownik and colleagues suggests that targeting c-Myc may prove useful even for cancers that don’t appear to be initiated by c-Myc deregulation, such as hepatoblastoma. “Our data suggest that pharmacologic approaches specifically targeting c-Myc or some of the pathways it regulates might be viable targets for novel therapeutic interventions,” says Prochownik.

Maybe in the future, one of cancer’s most active players can be stopped.

Courtney Chandler

Courtney Chandler is a postdoctoral researcher at Johns Hopkins University and an industry careers columnist for ASBMB Today.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A deeper insight into phospholipid biosynthesis in Gram-positive bacteria
Lipid News

A deeper insight into phospholipid biosynthesis in Gram-positive bacteria

February 18, 2020

Diego Sastre and Marcelo Guerin look at how membrane fluidity modulates the insertion of a peripheral enzyme to regulate bacterial phospholipid synthesis.

For vulnerable populations, the thorny ethics of genetic data collection
Feature

For vulnerable populations, the thorny ethics of genetic data collection

February 17, 2020

To be equitable, genetics research needs more diverse samples. But collecting that data could present ethical issues.

Anthrax vs. cancer
News

Anthrax vs. cancer

February 16, 2020

R. Claudio Aguilar explains how he joined forces with other labs in using a modified strain of anthrax to shrink tumors in dogs with terminal bladder cancer.

From the journals: JLR
Journal News

From the journals: JLR

February 11, 2020

Recent topics include interactions of the endocannabinoid pathway with the gut microbiome.

Selenium led Zhao from icy hometown to German hospitality
Award

Selenium led Zhao from icy hometown to German hospitality

February 09, 2020

JBC/Tabor award winner Wenchao Zhao studies Keshan disease, a nutrient deficiency named for the county in northeastern China where he grew up.

Dagar dissects a prostate cancer driver
Award

Dagar dissects a prostate cancer driver

February 08, 2020

This JBC/Tabor award winner has found a way to block androgen signaling in prostate cancer cells.