Nanoplastics may help set the stage for Parkinson’s risk
Parkinson’s disease and related dementias have been on the rise worldwide. These disorders are marked by an abnormal buildup of the protein alpha-synuclein in the brain. The factors leading to this buildup of alpha-synuclein are unknown. Research points to a potential role for environmental factors.
Small bits of plastic are widely found throughout the environment, including food and water supplies. Microplastics are plastic particles smaller than 5 mm in diameter—tinier than a sesame seed; nanoplastics are less than 1 μm, too small to be seen by the human eye. At least one previous study found that particles of polystyrene and other plastics can be detected in the blood of most healthy adults. Single-use polystyrene products—like plastic cups, utensils, and foam packing—are widespread environmental waste. But despite their ubiquity, the potential health consequences of these plastics are only beginning to be studied and understood.
Previous studies found evidence that alpha-synuclein’s activities can be affected by polystyrene and other particles. An international research team led by Dr. Andrew B. West of Duke University decided to take a closer look at the effects that nanoplastics might have on nerve cells and the brain. The scientists explored interactions between alpha-synuclein and polystyrene nanoplastics both in lab dishes and in mice. Results were reported on November 17, 2023, in Science Advances.
The researchers first showed that human alpha-synuclein binds readily to polystyrene nanoplastics in a test tube. This binding led to the formation of abnormal alpha-synuclein structures called fibrils, a hallmark of Parkinson’s disease and related dementias.
The scientists next examined how alpha-synuclein fibrils and nanoplastics behave with cultured brain cells, or neurons. They found that both the fibrils and the plastics can enter neurons via endocytosis, in which the cell’s outer membrane engulfs targeted items. Once inside, both the fibrils and the plastics entered the cell’s lysosomes, membrane-bound organelles that serve as cellular garbage disposals. The researchers found that nanoplastics disrupted lysosome activities, slowing the breakdown of harmful clumps of alpha-synuclein.
The team next looked at how polystyrene nanoplastics and alpha-synuclein interact in the mouse brain. They found that the nanoplastics and alpha-synuclein fibrils also interacted there, which increased the spread of abnormalities across interconnected brain regions. Neurons in the brain’s substantia nigra region were especially affected. This brain region helps to control movement and is damaged in Parkinson’s disease and related dementias.
Taken together, these findings point to previously unrecognized interactions that could contribute to Parkinson’s disease risk and progression. Further research is needed to study how these interactions affect disease development and whether other types of plastics have similar effects.
“Numerous lines of data suggest environmental factors might play a prominent role in Parkinson’s disease, but such factors have for the most part not been identified,” West explains. “Our study suggests that the emergence of micro and nanoplastics in the environment might represent a new toxin challenge with respect to Parkinson’s disease risk and progression.”
This story originally appeared on the NIH Research Matters website. Read the original article.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
From the journals: JLR
Fixation method to quantify brain metabolites. Belly fat and liver disease crosstalk. Stopping heart diseases in schizophrenic patients. Read about the recent JLR papers on these topics.
Does a protein hold the key to Alzheimer’s?
Researchers in Maryland and Massachusetts team up to study how SORL1 promotes tau trafficking and seeding in cells that leads to the neurodegenerative disorder.
Cracking the recipe for perfect plant-based eggs
It involves finding just the right proteins. With new ingredients and processes, the next generation of substitutes will be not just more egg-like, but potentially more nutritious.
MSU researchers leverage cryo-EM for decades-in-the-making breakthrough
Lee Kroos and Ben Orlando have reported the first high-resolution experimentally determined structures of the intramembrane protease SpolVFB.
From the Journals: MCP
Rapid and precise SARS-CoV-2 detection using mass spec. Mapping brain changes from drug addiction. Decoding plant osmotic stress response. Read about recent MCP papers on these topics.
What seems dead may not be dead
Vincent Tagliabracci will receive the Earl and Thressa Stadtman Distinguished Scientist Award at the ASBMB Annual Meeting, April 12–15 in Chicago.